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We present the results of the quantum calculation of the ground state energies and magnetic

g-factors of two rare earth (RE) ions: Yb3+ in Y2Ti2O7 crystal and Er3+ in YPO4 crystal. The

Variational Quantum Eigensolver (VQE) algorithm has been performed on 5-qubit IBM super-

conducting quantum computers via IBM Quantum Experience cloud access. The Hamiltonian

of the lowest spectroscopic multiplet of each RE ion, containing crystal field and Zeeman inter-

action, has been projected onto the collective states of three (Yb3+) and four (Er3+) coupled

transmon qubits. The lowest-energy states of RE ions have been found by minimizing the mean

energy in ∼ 250 – 350 iterations of the algorithm: the first part was performed on a quantum

simulator, and the last 25 iterations were conducted on the real quantum computing hardware.

All the calculated ground-state energies and magnetic g-factors agree well with their exact val-

ues, while the estimated error of 2÷15% is mostly attributed to the decoherence associated with

the two-qubit operations.

PACS: 71.70.Ch, 75.10.Dg, 76.30.Kg, 71.70.Ej.

Keywords: quantum computations, variational quantum eigensolver, quantum computers, rare-earth
ions, crystal field, g-factor.

1. Introduction

During the past decade, the development of working physical realizations of multiqubit quantum

computers has been quite rapid. In 2011, the D-Wave One system was announced: a 128-qubit

quantum annealing computer, which, however, was restricted to certain tasks and lacked the

possibility to implement arbitrary quantum gates necessary to realize the “iconic” quantum

algorithms [1]. In 2015, D-Wave Systems announced the general availability of the D-Wave 2X, a

1000+ qubit quantum annealing computer. In 2016, IBM introduced their first superconducting

quantum computer accessible by the vast scientific community through their web cloud [2]. In

2017, another company, Rigetti Computing, announced the public beta availability of a quantum

cloud computing platform [3]. In 2019, Google claimed that their quantum 54-qubit processor

achieved quantum supremacy [4].

However, quantum technology is still far from fault-tolerant computations, and most of al-

gorithms we know are extremely sensitive to noise. Quantum computers with > 50 qubits may

be able to perform tasks which surpass the capabilities of today’s classical digital computers,

but noise in quantum gates will limit the size of quantum circuits that can be executed reliably.

In this sense, modern quantum devices can be related to Noisy Intermediate-Scale Quantum

(NISQ) technology [5].

Modern quantum computing platforms enable the simulation of various coupled electronic

quantum systems, including Ising and central spin models [6, 7]. However, possible implemen-

tations are obviously not restricted to exchange-coupled spin aggregates. Another interesting

problem tackled by the modern quantum computing devices is simulation of the lowest-energy

state of simple atomic clusters like the hydrogen molecule [8]. A possible generalization would

be a study of a multi-electronic ion (a transition metal or rare earth ion) in a crystal. Currently,
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we are unaware of any research on quantum computer simulations of spectroscopic properties

of rare earth ions in crystals conducted so far. Each rare earth impurity ion has approximately

70 electrons interacting with each other, their nucleus and the nearby ions of the host crystal,

which makes almost impossible to find an exact solution using any classical algorithm.

In this work, we deal with a more simple problem of finding the lowest-energy states of two

Kramers ions (Yb3+ and Er3+) taking into account only their lower-energy multiplet states.

The electrostatic interaction between the electrons of the valence the 4f shell, together with

their spin-orbit interaction, produce a number of well-separated spectroscopic multiplets. The

total angular momentum of 4f shell and its projection are considered as good quantum numbers.

The electrostatic interaction produces some splitting between these levels within the multiplet,

which can be modelled by introducing the so-called crystal field Hamiltonian [9]. The lowest-

energy multiplets of Yb3+ (2F7/2) and Er3+ (4I15/2) contain 8 and 16 states respectively, and

can be simulated using 3 and 4 coupled qubits.

2. Crystal Field and Spectroscopic Data

Over the last two decades, the pyrochlore crystals with various impurity RE ions, being common

physical realizations of a geometrically frustrated system, have attracted the attention of many

researchers [10]. Here, we consider Y2Ti2O7 crystal doped with Yb3+ ions containing 13 electrons

in the valence 4f shell. Their electrostatic interaction with the surrounding Y3+, Ti4+ and O2−

ions of the host crystal projected onto the lowest-energy multiplet 2F7/2 (orbital momentum

L = 3, spin S = 1/2, total angular momentum J = 7/2) can be described by the effective

crystal field operator, which, in the case of trigonal symmetry of the Yb3+ site, is defined as:

H
(Yb)
CF = α2B

0
2O

0
2 + α4

(
B0

4O
0
4 +B3

4O
3
4

)
+ α6

(
B0

6O
0
6 +B3

6O
3
6 +B6

6O
6
6

)
. (1)

Above, Ok
p are Stevens operators (linear combinations of spherical tensor operators [9, 11]),

the parameters αp define the reduced matrix elements [9]. The crystal field parameters Bk
p

determined previously [11] are presented in Table 1.

The second system that we consider in this work is the yttrium orthophosphate crystal YPO4

activated with Er3+ ions. This system is a promising telecom-wavelength material for applica-

tions in quantum electronics and quantum information processing [12]. Er3+ ions substitute for

Y3+ ions on the sites of D2d symmetry. The crystal-field interaction projected onto the subspace

of 4I15/2 multiplet (L = 6, S = 3/2, momentum J = 15/2) is expressed as:

H
(Er)
CF = α2B

0
2O

0
2 + α4

(
B0

4O
0
4 +B4

4O
4
4

)
+ α6

(
B0

6O
0
6 +B4

6O
4
6

)
. (2)

The parameters Bk
p determined previously [12] are presented in Table 1.

The interaction with the static magnetic field, when projected onto the ground multiplet
2S+1LJ , results in the following Zeeman interaction term:

HZ = gJµBJB, (3)

where µB is the Bohr magneton, B is the magnetic field vector, and gJ is the Landé g-factor

(below, ge = 2.0023 is electronic g-factor) [9]

gJ = (ge − 1) · J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
+ 1. (4)

The matrices of the operators (1)-(3) in the basis of |J,MJ⟩ states have been computed on a

classical computer, and then expanded into series of either three- or four-fold tensor products

of Pauli matrices, see Section 4.
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Table 1. Crystal field parameters Bk
p (cm−1) and the reduced matrix elements for Yb3+ in Y2Ti2O7

crystal and Er3+ in YPO4 crystal.

p k
Yb3+ Er3+

αp Bk
p [11] αp Bk

p [12]

2 0 2
63 264.8 4

1575 112.9

4

0

− 2
1155

270.8
2

45045

10.3

3 -2155.2

4 776

6

0

4
27027

44.9

8
3864861

-43.0

3 636.6

4 56.1

6 683.2

3. Computational Hardware and Software

We conduct our experiments using cloud access to IBM devices via the Qiskit framework [13].

IBM processors utilize transmon qubit technology [14, 15]. The transmon qubit is a form of

superconducting charge qubit with additional capacity resistant to charge noise. The device

comprises of fixed-frequency Josephson-junction-based transmon qubits, with individual super-

conducting coplanar waveguide (CPW) resonators for qubit control and readout, and another

pair of CPW resonators providing the qubit connectivity. This fixed-frequency architecture is

favorable for obtaining long coherence times, and the qubit control and readout is achieved using

only microwave pulses. Each quantum chip is calibrated on a daily basis, thus minimizing its

single-qubit and CNOT error rates. Since our problems do not involve more than 4 qubits, we

mainly use a 5-qubit devices depicted in Figure 1.

Figure 1. Layout of a 5-qubit IBM quantum computer. The arrows indicate the coupling arranged

between the adjacent qubits.

A quantum algorithm for the ground-state problem, as proposed in works [16, 17], relies on

preparation of the initial state that has a large overlap with the ground state and solves the

problem using the quantum phase estimation algorithm (PEA). This approach requires sufficient

circuit depths and long coherence times, and such requirements cannot be fully handled by

contemporary hardware. In our work, we use the VQE algorithm introduced in 2014 by Peruzzo

and others [18, 19], which has less strict hardware requirements and is suitable for eigenvalue

calculations using NISQ devices. The low-depth circuits utilized by VQE can help to avoid

decoherence errors during computation. The algorithm is based on Ritz variational principle. If

we parametrize an eigenfunction |ψ(θ)⟩ of the Hamiltonian H by θ, and if we minimize left side

Magnetic Resonance in Solids. Electronic Journal. 2023, Vol. 25, No 2, 23204 (11 pp.) 3
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of inequality (5), we will be able to approach the ground state energy E0 of H:

⟨ψ(θ)|H|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩

≥ E0. (5)

The VQE is a semi-classical algorithm omprising of two parts: (i) the quantum-computer part

that evaluates the expectation value (5) of the target Hamiltonian, and (ii) the classical-computer

part that seeks the minimum of the expectation value with respect to θ using a classical opti-

mization algorithm.

In order to parametrize the eigenstate, we have to adopt one of the strategies used to build

so-called ansatz circuits to prepare trial state. The first one relies on the knowledge of properties

and symmetries of system’s Hamiltonian. Such ansatzes are widely used in quantum chemistry

problems, e.g. the Unitary Coupled Cluster Ansatz (UCCA) in recent studies [20–22]. Second

strategy is called Hardware-Efficient Ansatz: this one utilizes quantum gates that are naturally

available on the quantum hardware [23]. We have chosen the second strategy for our work,

because it requires less circuit depth, as we should exclude as many error sources as possible

due to the limited coherence times of contemporary IBM quantum devices.

Let us briefly summarize the basic principles of VQE approach [18, 19]. For the initial state

|φ⟩, it would be convenient to choose one of the computational basis states

{|00 . . . 0⟩, |00 . . . 1⟩, . . . , |11 . . . 1⟩} .

Our ansatz acts on this state as unitary transformation U(θ):

|ψ(θ)⟩ = U(θ)|φ⟩, (6)

where θ = {θ1, θ2, . . . , θm} is a set of m parameters. A generalized unitary transformation

performed on a single qubit modeling the states of a spin-1/2 particle could be written as a

combination of three spin rotations around z and y axes in the form [24]:

U q,d(θ) = RZ

(
θq,d1

)
RY

(
θq,d1

)
RZ

(
θq,d3

)
, (7)

where q identifies the qubit and d identifies the algorithm depth layer of the circuit. For N

qubits, we can write:

U(θ) =

N∏
q=1

U q,d(θ)UENT

N∏
q=1

U q,d−1(θ)UENT . . .

N∏
q=1

U q,0(θ), (8)

where UENT represents an entangling layer of two-qubit gates. Since the qubits are all ini-

tialized in their ground state |0⟩, the first RZ-set of rotations U q,0 has no effect on it and

is not implemented, this gives the algorithm N(3d + 2) parameters to be optimized, where d

is the depth of the algorithm. After each trial state is prepared, we estimate the associated

mean energy (5) by measuring the expectation values of the individual Pauli tensor products

⟨P ⟩ =
〈
A1 ⊗B2 ⊗ · · · ⊗ CN

〉
, where each A,B, . . . , C is either one of the three Pauli operators

Xq, Y q, Zq of the qubit q, or the identity operator Iq. The Hamiltonian H is presented as a sum

of such products, see section 4. Since we work in the basis of the eigenstates of Zq operators, Zq

values can be obtained by directly measuring the final state of a qubit q, and then averaged over

a large number of runs (8192 in our case) to produce ⟨. . . Zq . . .⟩. In order to make measurements

for another two Pauli operators Xq, Y q, we apply additional π/2 rotations prior to measurement

of Zq.
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K.M. Makushin, E.I. Baibekov

After the preparation of the trial state is finished and all the measurements are done, the

algorithm continues with its classical part. This part involves the summation of all average

values ⟨P ⟩ comprising the expectation value of H, and a search for a better set of parameters

that would lower ⟨H⟩. After that, the whole cycle repeats again until the convergence conditions

are fulfilled.

4. Quantum computation of the Lowest Energy State of a RE ion

To conform with VQE approach, we map the problem’s Hamiltonian H to an N -qubit Hamilto-

nian containing Pauli tensor products. We use the Hilbert-Schmidt inner product decomposition:

H =
1

N2

∑
i,j,...,k

hi,j,...,k ·X1
i ⊗X2

j ⊗ · · · ⊗XN
k ,

hi,j,...,k =
1

N
Tr
[
X1

i ⊗X2
j ⊗ · · · ⊗XN

k ·H
]
.

(9)

Above, i, j, . . . , k refer to {X,Y, Z, I} operators. In the case of Yb3+ ion’s 2F7/2 state, we map its

Hamiltonian (1) to 8 states of three qubits, and obtain (omitting the upper indices for simplicity)

H
(Yb)
CF = h1IZZ + h2XXI + h3XZX + h4Y Y I + h5Y ZY+

+h6ZIZ + h7ZXX + h8ZY Y + h9ZZI.
(10)

Next, we utilize the fact that the crystal field Hamiltonian contains only real terms. In this

case, one can simplify the one-qubit rotation (7) to the form that contains only one parameter

U q,d = RY

(
θq,d
)
[25]. With this simplification, our algorithm has only N(d+ 1) parameters to

be optimized. We choose d = 1 for both crystals.

For the classical optimization part, we choose Simultaneous Perturbation Stochastic Approx-

imation (SPSA) algorithm, since it is robust to stochastic fluctuations and requires only two

cost-function evaluations [23], irrespective of the dimensionality of the parameter space. Because

we did not have continuous access to IBM quantum devices, to avoid time consumption, the

first part of the optimization procedure was performed on the simulator of a quantum computer.

The energy was estimated on the actual hardware during the last 25 optimization iterations,

and then averaged over several iterations to improve results.

It is possible to reduce the number of terms in the Hamiltonian using simple qubit-wise

commutativity (QWC) [26] for Pauli operators. Two Pauli strings QWC-commute if, at each

index, the corresponding two Pauli operators commute. For instance, {XX,XI, IX, II} is

a QWC partition, so all these Pauli strings can be measured simultaneously, and the results

then re-calculated straightforwardly to obtain the corresponding expectation values. Since each

additional measurement is likely to increase the error, the use of QWC is advantageous. To this

extent, we can rewrite the Hamiltonian (10) in the form:

HYb
CF = (h1 + h6 + h9)IZZ + h2XXI + h3XZX + h4Y Y I + h5Y ZY + h7ZXX + h8ZY Y. (11)

For Er3+ ion, the Hamiltonian (2) maps to the Hilbert space of four qubits:

H
(Yb)
CF = h1IIZZ + h2IXII ++h3IXZZ + h4IZIZ + h5IZZI+

h6XXII + h7XXZZ + h8Y Y II + h9Y Y ZZ + h10ZIIZ+

+h11ZIZI + h12ZXIZ + h13ZXZI + h14ZZII + h15ZZZZ.

(12)

Again, using QWC approach, we reduce the number of independently measured terms to 4.

The Zeeman interaction (3) has been decomposed into the Pauli strings in the same manner.

Magnetic Resonance in Solids. Electronic Journal. 2023, Vol. 25, No 2, 23204 (11 pp.) 5
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The magnetic g-factors of the lowest Kramers doublet of each multiplet have been calculated by

minimizing the energy of the lowest state of the ion subjected to the external magnetic field B

directed along (g∥) or perpendicular to (g⊥) the crystal’s symmetry axis. In either case,

g =
2⟨ψ(θ∗)|HZ|ψ(θ∗)⟩

µBB
, (13)

where θ∗ represents the parameter set minimizing the expectation value of total Hamiltonian

HCF +HZ.

For the case of Er3+, we used the different way to calculate g⊥ because the expansion of

Hamiltonian H
(Er)
CF +H⊥

Z consisted of more than 25 terms, which could not be reduced by QWC

method. This led to the accumulation of significant statistical error and making it impossible

to obtain g⊥ with an acceptable accuracy.

We took advantage of the fact that Er3+ is a Kramers ion with odd number of electrons

on valence shell, and its multiplet states are doubly degenerate and form so-called Kramers

doublet {|ψ1⟩, |ψ2⟩. We replace these states by the states of an effective spin 1/2 {|ψ1⟩ ≡ | ↓⟩,
|ψ2⟩ ≡ | ↑⟩} and write an effective Hamiltonian:

Heff = µB

(
g∥BzS

eff
z + g⊥BxS

eff
x

)
. (14)

Up to a global phase factor we write:〈
↓
∣∣∣µB g⊥BxS

eff
x

∣∣∣ ↑〉 ≈ ⟨ψ1 |µB gJBxJx|ψ2⟩ , (15)

The relation between these degenerate Kramers states can be expressed with time-reversal

operator T̂ :

g⊥ = gJ
|⟨ψ1 |Jx|ψ2⟩|
|⟨↓ |Seff

x | ↑⟩|
= 2 gJ

∣∣∣〈ψ1

∣∣∣Jx T̂ ∣∣∣ψ1

〉∣∣∣ . (16)

The state |ψ1⟩ can be obtained after the minimization of HCF +H∥
Z, where H∥

Z does not require

the introduction of additional Pauli strings. The expansion of JxT̂ in (16) into the Pauli tensor

products, in combination with the QWC, consists only of 8 terms. We have also calculated the

standard error

α =
σ√
n
, (17)

where σ is a standard deviation of the result and n is the number of measurement repetitions.

The standard deviation in the measurement of one of the Pauli strings in the Hamiltonian is

given by

σPi =
√

⟨ψ|P 2
i |ψ⟩ − ⟨ψ|Pi|ψ⟩2 =

√
1− ⟨ψ|Pi|ψ⟩2 ≤ 1. (18)

The standard error in the energy measurement is then upper bounded by [23]

αE =

(∑
i

α2
pi

) 1
2

=

(∑
i

h2iσ
2
pi

ni

) 1
2

≤

(∑
i

h2i
ni

) 1
2

. (19)

This quantity is shown in the inset of Figure 3 and Figure 2.
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Figure 2. Results of the minimization procedure in the case of Er3+ crystal field Hamiltonian. The

first part (red and blue dots) correspond to the quantum simulator results obtained for the

two close sets of parameters determining the next-iteration set in SPSA. The last part of the

curve (green dots) corresponds to the quantum hardware part of the calculation. Vertical bars

represent the upper error bound (19).

5. Results and Discussion

We performed a quantum computations of ground state energies and g-factors of two rare-earth

ion impurities via cloud access to IBM quantum devices. We used Hilbert-Schmidt decomposi-

tion along with QWC-method to obtain a weighted sum of Pauli operator tensor products. Using

a hardware-efficient ansatz to prepare trial states we found ground state energies of impurity

ions. By adding an interaction with an external magnetic field to our initial Hamiltonians we

determined the projections of ground state g-factors.

Some of the results obtained for the YPO4:Er
3+ and Y2Ti2O7:Yb

3+ crystals are shown in Fig-

ures 2 and 3 respectively. The SPSA minimization was performed with qiskit qasm simulator

[13], and the ground-state energy ⟨ψ(θ∗)|H|ψ(θ∗)⟩ has been calculated on the real hardware

during the last 25 steps of optimization with 5-qubit quantum chip, and then averaged (dashed

green line). The variance for 25 estimated energy values is Σ2 = 1.32 cm−2 for Er3+ and

Σ2 = 184.98 cm−2 for Yb3+. The estimated error is attributed mainly to the decoherence as-

sociated with the two-qubit operations. The exact eigenvalues were calculated with standard

diagonalization procedure (dashed black line). As shown in Figure 2, the difference between the

final energy estimate and the “exact” ground state energy is ∼ 10%.

g-factors were calculated according to Eq. 13. One should bear in mind that, due to nonlin-

Magnetic Resonance in Solids. Electronic Journal. 2023, Vol. 25, No 2, 23204 (11 pp.) 7
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Figure 3. Results of the minimization procedure in the case of Yb3+ crystal field Hamiltonian. The

first part (red and blue dots) correspond to the quantum simulator results obtained for the

two close sets of parameters determining the next-iteration set in SPSA. The last part of the

curve (green dots) corresponds to the quantum hardware part of the calculation. Vertical bars

represent the upper error bound (19).

earity of the average state energy with respect to the field value B, the calculated value (13)

would depend on B. We chose B=2000G and 10000G for Er3+ and Yb3+, respectively, to as-

sure that these nonlinear contributions played insignificant role, and, at the same time, to allow

the reliable calculation of the ground doublet splitting. The calculated g-factor error values, if

compared with the exact classical diagonalization, are 2÷ 15% (see Table 2).

These results show that IBM’s near-term quantum computers are capable to simulate simple

physical systems like an impurity ion in a crystal. However it’s too early to say that these devices

can operate efficiently. The amount of errors is still sufficient, the biggest problem here is short

coherence time of qubits that limits the length of a quantum circuit. In turn, this limits the

number of variational parameters in the ansatz circuit, As a result, we can’t consider quantum

systems with large state spaces (the largest dimension of the state space in our article is 16).

This fact does not allow us to scale this approach to more complex physical systems.

Scaling our task to address problems involving interactions with more than four particles

will require developing a new approach for constructing ansatz state, one should consider sym-

metries that limit the size of Hilbert space for more precise search. Straightforward use of

Hardware-efficient ansatz will lead to accumulating errors due to increasing ansatz depth, and

the minimization procedure will probably stuck in local minima. However, in our small-scale

8 Magnetic Resonance in Solids. Electronic Journal. 2023, Vol. 25, No 2, 23204 (11 pp.)
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problem, the SPSA optimization algorithm demonstrated good performance, achieving conver-

gence within 100-150 iterations in all cases.

We used the measurement error mitigation method to reduce the errors that occure during

the process of qubits state measurement (such as errors associated with qubit signal recognition).

Most errors that result in this difference between exact or experimental values and the values

obtained with quantum computer should be attributed to non-ideal one-qubit and two-qubit

operations. Besides, results can be influenced by the current calibration quality since two-qubit,

one-qubit and readout errors vary with each daily calibration.

Furthermore, scaling will lead to large number of Pauli strings in expansion of target Hamil-

tonian, which suggests the need to significantly decrease measurement errors with new methods

of quantum data post-processing. Neural networks are supposed to be a good way to address

this problem, according to recent studies [27].

Table 2. The g-factors of the lowest-energy Kramers doublet.

Yb3+ in Y2Ti2O7 Er3+ in YPO4

Experiment

[11]

Classical

diagonali-

zation

Quantum

calculation

Experiment

[12]

Classical

diagonali-

zation

Quantum

calculation

g∥ 1.787 1.864 1.566±0.058 6.42 6.78 6.463±0.027

g⊥ 4.216 4.181 4.153±0.079 4.80 4.71 5.097±0.063

For NISQ devices, such semi-classical algorithms like VQE are expected to be widely used

in the coming years. We expect that quantum computers may give us a computing speed

advantage since in the case of variational algorithms and n-particle Hamiltonian, all quantum

resources (quantum memory, number of qubits, number of measurements) grow polynomially

with the number of particles. Classical procedure of the Hamiltonian diagonalization requires

an exponential number of operations with respect to the number of particles (∼ 2n), and so do

classical resources.
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