"Magnetic Resonance in Solids. Electronic Journal" (MRS ej) is a peer-reviewed, all electronic journal, publishing articles which meet the highest standards of scientific quality in the field of basic research of a magnetic resonance in solids and related phenomena.

Indexed and abstracted by Web of Science (ESCI, Clarivate Analytics, from 2015), Scopus (Elsevier, from 2012), RusIndexSC (eLibrary, from 2006), Google Scholar, DOAJ, ROAD, CyberLeninka (from 2006), SCImago Journal & Country Rank, etc.

Editors-in-Chief
Jean Jeener (Universite Libre de Bruxelles, Brussels)
Boris Kochelaev (KFU, Kazan)
Raymond Orbach (University of California, Riverside)

Executive Editor
Yurii Proshin (KFU, Kazan)
mrsej@kpfu.ru

Editors
Vadim Atsarkin (Institute of Radio Engineering and Electronics, Moscow)
Yurij Bunkov (CNRS, Grenoble)
Mikhail Eremin (KFU, Kazan)
David Fushman (University of Maryland, College Park)
Hugo Keller (University of Zürich, Zürich)
Yoshio Kitaoka (Osaka University, Osaka)
Boris Malkin (KFU, Kazan)
Alexander Shengelaya (Tbilisi State University, Tbilisi)
Jörg Sichelschmidt (Max Planck Institute for Chemical Physics of Solids, Dresden)
Haruhiko Suzuki (Kanazawa University, Kanazawa)
Murat Tagirov (KFU, Kazan)
Dmitrii Tayurskii (KFU, Kazan)
Valentine Zhikharev (KNRTU, Kazan)

* In Kazan University the Electron Paramagnetic Resonance (EPR) was discovered by Zavoisky E.K. in 1944.
Study of the crystal field and rare-earth magnetism in YF₃:Yb³⁺

A.V. Savinkov ¹ *, B.F. Gabbasov ¹, O.A. Morozov ¹, A.G. Kiiamov ¹, M.S. Tagirov ¹,²

¹ Institute of Physics, Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russia
² Institute of Perspective Research, TAS, L. Bulachnaya 36a, Kazan 420111, Russia

*E-mail: Andrey.Savinkov@gmail.com

Received November 10, 2017; revised December 9, 2017; accepted December 11, 2017

The electron paramagnetic resonance spectra (X-band, f ~ 9.42 GHz) of Yb³⁺ ions have been measured at temperature 15 K in YF₃:Yb³⁺ single crystals. The principal values of the g-tensors, \(g_b = g_1 = 1.67, \quad g_2 = 2.42, \quad g_3 = 5.41 \), and directions \(n_1 = [0, 1, 0] \), \(n_2 = [\pm \sin(54.8°), 0, \cos(54.8°)] \), \(n_3 = [\sin(35.2°), 0, \cos(35.2°)] \) of the corresponding principal axes for the Yb³⁺ ions which replace Y³⁺ ions at two magnetically nonequivalent sites with the local Cs symmetry in the orthorhombic crystal lattice have been obtained from analysis of the angular dependences of the spectra taken in the static magnetic fields lying in the crystallographic (bc) and (ac) planes. Experimental data are interpreted in the frameworks of the crystal field theory. Using the obtained set of crystal field parameters for Yb³⁺ ions in the YF₃ host related to the crystallographic system of coordinates, we can reproduce satisfactorily the crystal field energies of Yb³⁺ ions determined earlier from optical measurements.

PACS: 71.70.Ch, 71.70.Ej.

Keywords: crystal field parameters, exchange charge model, EPR, trifluorides

1. Introduction

The rare-earth trifluorides RF₃ and rare-earth doped YF₃:Re³⁺ (R is rare-earth ion) yttrium trifluoride have been studied in the past as a model system for testing theories of rare-earth magnetism in insulators (see, for example, Ref. [1-5]) and because of their numerous applications as promising host materials for solid laser and scintillator technology. In recent years interest in the study of rare-earth trifluorides has returned thanks to advances in the fabrication of nanoparticles of pure rare-earth fluorides RF₃ and rare-earth ions doped nanoparticles as well [6-10]. The great interest appeared due to potential applications of the nanosized materials in high resolution displaying, electroluminescent devices and markers for biomolecules.

In present study we report the results of systematic studies of crystal field and low temperature magnetic properties of Yb³⁺ ion in diluted YF₃:Yb³⁺ single crystals. Angular dependences of the electron paramagnetic resonance (EPR) spectrum of Yb³⁺ ion in YF₃ host have been measured in YF₃:Yb³⁺ single crystals which were rotated around the crystallographic a- and b-axes so that the static magnetic field was applied as \(B \perp a \), and \(B \perp b \) respectively. Measured angular dependences of EPR spectrum and known from the literature spectrum of electronic energies of Yb³⁺ ion in YF₃ host [11] have been analyzed in the framework of the crystal field theory. The set of crystal field parameters has been calculated using the semi-phenomenological exchange charge model [12] and then corrected by comparing results of calculations with the experimental data. Obtained set of the crystal field parameters reproduces satisfactorily the angular dependences of Yb³⁺ EPR spectrum, components of g-tensor and Stark energies of Yb³⁺ ion in YF₃ host.

2. Experimental details

Two YF₃:Yb³⁺ (0.5%) single crystals were grown from commercial powders of YF₃ (99.99%) and YbF₃ (99.99%) in carbon crucibles in high vacuum (less than 10⁻⁴ mbar) by temperature gradient technique. All YF₃:Yb³⁺ samples were oriented using the X-ray diffraction pattern with the accuracy of ±3°. The samples were oriented so that angular dependences of EPR spectra were measured in the static magnetic field directed as \(B \perp a \) and \(B \perp b \), i.e. perpendicular to the crystallographic axes a and b of orthorhombic crystal structure of the YF₃.
The EPR spectra of YF$_3$:Yb$^{3+}$ single crystals were measured with the X-band (~9.42 GHz) Bruker ESP300 spectrometer. The standard ER4102ST rectangular cavity with the TE$_{102}$ mode was used. The studies were performed at 15 K, and the sample temperature was controlled using an Oxford Instruments ESR9 liquid helium flow system.

In the magnetic field directed along the c-axis, the EPR spectrum contains a group of lines (Figure 1) corresponding to Yb$^{3+}$ ions with typical hyperfine structure of three stable isotopes 169Yb, 171Yb and 173Yb. The g-factor in this direction is $g_c = 4.635$. Each magnetically nonequivalent Yb$^{3+}$ center in the YF$_3$ crystal cell gives a resonant line in EPR spectrum due to transitions between sublevels of the ground state doublet of $^2F_{7/2}$ multiplet. Transitions between higher-lying energy levels aren’t observed because the distance to the excited levels is too large in comparison with the quantum of the X-band EPR. Also, the excited levels are not populated at $T = 15$ K.

Angular dependences of Yb$^{3+}$ EPR spectra, measured in YF$_3$:Yb$^{3+}$ single crystals for the magnetic field oriented in the (bc) and (ac) plane are represented in Figure 2(a) and (b) respectively. The principal values of g-tensor $g_1 = 1.67(1)$, $g_2 = 2.42(1)$, $g_3 = 5.41(1)$ and g-factors along the crystallographic axes $g_a = 3.68(1)$, $g_b = g_1 = 1.67(1)$, $g_c = 4.63(1)$ have been obtained from the analysis of the angular dependences. Obtained in our experiment the principal values of the g-tensor are in a good agreement with the values obtained in Ref. [13]. The principal components g_2 and g_3 are in the crystallographic (ac) plane and the principal direction corresponding to g_2 has an angle of 54.8° with the c-axis; the principal direction of g_1 coincides with the b-axis of YF$_3$:Yb$^{3+}$ crystal lattice.

![Figure 1. The EPR spectrum in YF$_3$:Yb$^{3+}$ at the temperature 15 K in the magnetic field B||c.](image)

![Figure 2. Angular dependences of Yb$^{3+}$ EPR spectra, measured (open circles) in YF$_3$:Yb$^{3+}$ single crystals for the magnetic field oriented in the a) bc- and b) ac-plane of YF$_3$ crystal structure. Calculated angular dependences are shown by solid lines.](image)

3. Discussion

The YF$_3$:Yb$^{3+}$ samples have an orthorhombic structure with the space group $Pnma$ (D^{15}_{2h}) [14]. The parameters of the YF$_3$ crystal cell are $a = 0.63537(7)$ nm, $b = 0.68545(7)$ nm, $c = 0.43953(5)$ nm [15]. The unit cell contains four formula units. The coordinates of fluorine F1 ions in 4c positions and F2
fluorine ions in 8d positions are determined by parameters u_1, u_2, s_2, v_1, v_2 and equal
$\pm (u_1, 1/4, v_1), \pm (u_1 - 1/2, 1/4, 1/2 - v_1)$ for F1; $\pm (u_2, s_2, v_2), \pm (u_2 - 1/2, s_2, 1/2 - v_2)$,
$\pm (u_2 - 1/2, 1/2 - s_2, 1/2 - v_2)$ for F2; the rare-earth ions in 4c positions with the point symmetry C_S
have the coordinates $\pm (u, 1/4, v), \pm (u - 1/2, 1/4, 1/2 - v)$. The parameters u_1, v_1, u_2, s_2, v_2, u, v
are represented in Table 1 in units of the YF$_3$ lattice constants [15].

To describe the results of EPR measurements and the electronic energies of Yb$^{3+}$ ion in YF$_3$ host,
we consider the effective Hamiltonian of a single Yb$^{3+}$ ion, operating in the total basis of 14
wave functions of the electronic 4f13 configuration, in the external magnetic field B:

$$H_j = H_0 + H_{CF,j} - H_{Z,j},$$ \hspace{1cm} (1)

here H_0 is the free ion Hamiltonian which includes only the spin-orbit interaction for Yb$^{3+}$ ion with
parameter $\zeta = 2912$ cm$^{-1}$. The electronic Zeeman energy is $H_{Z,j} = -\mu_B B_j$, where $\mu = -\mu_0 \sum_e (I_e + 2s_e)$
is the electronic magnetic moment of the Yb$^{3+}$ ion. The Yb$^{3+}$ ions in the sublattices $j = 1, 2, 3$ and 4
are magnetically equivalent in pairs. The crystal field Hamiltonian

$$H_{CF,j} = \sum_{k=2,4,6} \sum_{q=0,k} B^k_q (j) \langle l \| \alpha_k \| l \rangle \cdot O^e_q$$ \hspace{1cm} (2)

is determined by a single set of 15 crystal field parameters $B^k_q (1)$ (in the Cartesian system of
coordinates defined so that $x \parallel c, y \parallel b$ and $z \parallel a$), O^e_q are Stevens’ equivalent operators, reduced matrix elements
$\langle l \| \alpha_k \| l \rangle$ are Stevens’ coefficients.

At the first approximation the parameters of the electrostatic interaction of open Yb$^{3+}$ electronic 4f-shell
with the ion charges in the YF$_3$:Yb$^{3+}$ crystal lattice can be evaluated corresponding to the point charge model:

$$B^{(pc)k}_q = -\frac{e^2 q_L (1 - \sigma_k^{nl}) \langle r^k \rangle (-1)^q C_q^{(k)} (\theta_L, \varphi_L)}{R_L^{1+}},$$ \hspace{1cm} (3)

where q_L is the charge of the ligand, L; θ_L and φ_L are angles in a spherical coordinate system with the
origin at the nucleus of the rare-earth ion; R_L is the distance from the rare-earth ion to the ligand L. The values
of the moments of the spatial density of the Yb$^{3+}$ 4f-electrons are $\langle r^2 \rangle = 0.613$, $\langle r^3 \rangle = 0.960$,
$\langle r^6 \rangle = 3.104$ a.u. [16]; σ_k^{nl} are the shielding factors with values $\sigma_2 = 0.588$, $\sigma_4 = \sigma_6 = 0$ taken for Yb$^{3+}$ ion.

In order to correct the electrostatic interaction for the spatial distribution of the ligand charges, we
used the semi phenomenological exchange charge model [12]:

$$B^{(ec)k}_q = \frac{2(2k + 1)}{2l + 1} \frac{e^2}{R_L} S^e_L (R_L) (-1)^q C_q^{(k)} (\theta_L, \varphi_L),$$ \hspace{1cm} (4)

where $S^e_{L}^{al}$ represents the bilinear forms of overlap integrals for the wave functions of the Yb$^{3+}$
4f-electrons, and the wave functions of the 2s, 2p-electrons of the ligand ions (F$^-$):

$$S^{e_L}_{L} (R_L) = G_1 S^{a_L}_{L} + G_2 S^{b_L}_{L} + G_3 R_L S^{c_L}_{L}$$ \hspace{1cm} (5)

Here $S^{a_L}_{L} = \langle nl0 | 200 \rangle$, $S^{b_L}_{L} = \langle nl0 | 210 \rangle$, $S^{c_L}_{L} = \langle nl1 | 211 \rangle$ (\textit{n} = 4, \textit{l} = 3 are quantum numbers for
Study of the crystal field and rare-earth magnetism in YF₃:Yb³⁺

4f-electrons), the coefficients \(\gamma_2 = 3/2, \gamma_4 = 1/3, \gamma_6 = -3/2 \) for 4f-electrons. Parameters of the model \(G_s, G_o \), and \(G_x \), were taken for Yb³⁺ ions with values \(G_s = G_o = G_x = 15.0 \).

Thus, the crystal field parameters for Yb³⁺ ions in YF₃ crystal lattice were calculated as a sum:

\[
B_q^k = B_q^{(pc)k} + B_q^{(ec)k}
\]

Calculated values of the crystal field parameters are shown in Table 2 (column "Calculated"). Final sets of crystal field parameters (see column "Adjusted" in Table 2) was obtained by varying the calculated values of \(B_q^k \) to minimize the squared deviation of the theoretically obtained values of \(g \)-factor (Table 3) from defined in our EPR experiment; squared deviation of calculated values of the energy sublevels of Yb³⁺ ions in YF₃ host from the appropriate measured values [11] (totally four known energies, see Table 4) were also minimized. The errors in the adjusted crystal field parameters (see values given in brackets, column "Adjusted" in Table 2) corresponds to such changes of each \(B_q^k \) that give rise to deviation of the minimization result no more than 5% of the best minimized value.

Table 2. The crystal field parameters (in cm⁻¹) of the Yb³⁺ ions in YF₃ crystal lattice.

<table>
<thead>
<tr>
<th>(B_q^k)</th>
<th>Calculated</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_0^2)</td>
<td>94.7</td>
<td>114.9(1)</td>
</tr>
<tr>
<td>(B_1^2)</td>
<td>749</td>
<td>667.1(1)</td>
</tr>
<tr>
<td>(B_2^2)</td>
<td>-236</td>
<td>-329.8(1)</td>
</tr>
<tr>
<td>(B_0^4)</td>
<td>-1.7</td>
<td>-23.1(1)</td>
</tr>
<tr>
<td>(B_1^4)</td>
<td>-670</td>
<td>-381.8(2)</td>
</tr>
<tr>
<td>(B_2^4)</td>
<td>-12.2</td>
<td>-19.8(1)</td>
</tr>
<tr>
<td>(B_3^4)</td>
<td>275</td>
<td>154.5(4)</td>
</tr>
<tr>
<td>(B_4^4)</td>
<td>90.5</td>
<td>53.7(2)</td>
</tr>
<tr>
<td>(B_0^6)</td>
<td>-0.86</td>
<td>-9.48(4)</td>
</tr>
<tr>
<td>(B_1^6)</td>
<td>-290</td>
<td>-287.5(3)</td>
</tr>
<tr>
<td>(B_2^6)</td>
<td>-284</td>
<td>-171.0(2)</td>
</tr>
<tr>
<td>(B_3^6)</td>
<td>-41.8</td>
<td>-22.2(9)</td>
</tr>
<tr>
<td>(B_4^6)</td>
<td>-73.1</td>
<td>-50.7(3)</td>
</tr>
<tr>
<td>(B_5^6)</td>
<td>-862</td>
<td>-705.1(8)</td>
</tr>
<tr>
<td>(B_6^6)</td>
<td>248</td>
<td>233.3(9)</td>
</tr>
</tbody>
</table>

Table 3. Values of \(g \)-factor of Yb³⁺ ion in YF₃ crystal lattice.

<table>
<thead>
<tr>
<th>(g)-factor</th>
<th>Measured</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_1)</td>
<td>1.67(1)</td>
<td>1.670</td>
</tr>
<tr>
<td>(g_2)</td>
<td>2.42(1)</td>
<td>2.423</td>
</tr>
<tr>
<td>(g_3)</td>
<td>5.41(1)</td>
<td>5.409</td>
</tr>
<tr>
<td>(g_a)</td>
<td>3.68(1)</td>
<td>3.690</td>
</tr>
<tr>
<td>(g_b)</td>
<td>1.67(1)</td>
<td>1.670</td>
</tr>
<tr>
<td>(g_c)</td>
<td>4.63(1)</td>
<td>4.638</td>
</tr>
</tbody>
</table>

Table 4. Crystal field energies (in cm⁻¹) of Yb³⁺ ions in YF₃.

<table>
<thead>
<tr>
<th>Multiplet, (^{2S+1}L_J)</th>
<th>Measured [11]</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^2F_7/2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(^2F_5/2)</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>(^2F_3/2)</td>
<td>-</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>10230</td>
<td>10231</td>
</tr>
<tr>
<td></td>
<td>10367</td>
<td>10385</td>
</tr>
<tr>
<td></td>
<td>10587</td>
<td>10566</td>
</tr>
</tbody>
</table>

4. Conclusion

The angular dependences of the EPR spectrum of Yb³⁺ ion in YF₃ host have been measured in YF₃:Yb³⁺ single crystals which were rotated around the crystallographic \(a \)- and \(b \)-axes so that the static magnetic field was applied respectively in \((bc) \) and \((ac) \) plane of YF₃:Yb³⁺ crystal structure. The set of crystal field parameters has been calculated using the semi-phenomenological exchange charge model and then corrected by comparing the results of calculations with the experimental data. Using obtained set of the crystal field parameters the angular dependences of Yb³⁺ EPR spectra and values of \(g \)-factors have been calculated and found in a good agreement with ones measured experimentally. Stark energies of Yb³⁺ ion in YF₃ host have been also reproduced satisfactorily.
Acknowledgments
Authors are grateful to B.Z. Malkin for useful discussions. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University, partially supported by RFBR grant №15-02-06990 а.

References
10. Grzyb T., Lis S. J. Rare Earths 27, 588 (2009)