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New scenario of irreversibility for linear systems has been found and discussed. This scenario is based on the 
interpretation of the geometrical/physical meaning of the temporal fractional integral with complex and real fractional 
exponents. It has been shown that imaginary part of the fractional integral related to discrete-scale invariance (DSI) 
phenomenon and observed only for true regular (discrete) fractals. Numerical experiments show that the imaginary 
part of the complex fractional exponent can be well approximated by simple and finite combination of the leading 
sine/cosine log-periodical functions with period lnξ (ξ is a scaling parameter). In the most cases analyzed the leading 
Fourier components give a pair of complex conjugated exponents defining the imaginary part of the complex 
fractional integral. For random fractals, where invariant scaling properties are realized only in the statistical sense the 
imaginary part of the complex exponent is averaged and the result is expressed in the form of the conventional 
Riemann-Liouville integral. The conditions for realization of reind and recaps elements with complex power-law 
exponents have been found. The fractal structures leading to pure log-periodic oscillations related to fractional 
integration with complex exponent are analyzed. Description of relaxation processes by kinetic equations containing 
complex fractional exponent and their possible recognition in the dielectric spectroscopy is discussed.  
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1. Introduction 
As it is known [1], all equations describing the kinetic stage of evolution should have clearly expressed irreversibility 
with respect to the temporal variable t. This inherent irreversible property should be derived from the basic reversible 
equation for density matrix (Liouville equation). The correct procedure of such deduction is reduced to some 
decoupling procedure as it is done usually in the Mori-Zwanzig formalism [2] or to the procedure of the reduced 
description based on the hypothesis of an intermediate local equilibrium. The last hypothesis is the basic one in the 
Zubarev's formalism for nonequilibrium statistical operator [3]. But these two procedures are rather approximate and 
not well justified.  

Now it is becoming clear that for nonlinear systems a natural scenario of transition from reversible systems to 
irreversible ones should use the dynamical chaos conceptions [4]. For linear systems the well-justified correct procedure 
for creation of a kinetic scenario from the initial reversible equations is absent. In our opinion, this procedure for wide 
class of dynamical systems should include a formalism of the fractional calculus [5]. As it is well-known, the non-
integer fractional operators of differentiation and integration have the property of the partial irreversibility or, in other 
words, the property of the 'remnant' memory considered in [6]. So, the problem of correct deduction of the fractional 
integral from usual integer integration operation is appeared.  

Recently much attention has been paid to existence of equations containing real fractional exponent [7-9]. 
Now it becomes evident that equations with fractional derivatives will play a crucial role in description of kinetic 
and transfer phenomena in mesoscale region. As it was already discussed in paper [10] the frontiers of science are 
rapidly shifting from the investigation of the basic bricks of matter to the elucidation of mesoscopic principles of 
its organization. Moving in this way we need a mathematical apparatus, which adequately corresponds to a true 
description of kinetic properties of a matter on mesoscale region. From our point of view this necessary 
mathematical instrument should lie in deep understating of the 'physics' of the fractional calculus. The first 
attempt to understand the result of averaging of a smooth function over the given fractal (Cantor) set has been 
undertaken in [7]. In the note [11] and later in paper [12] some doubts were raised to the reliability of the 
previously obtained result. The criticism expressed in these publications forced the author (RRN) to reconsider the 
former result, and the detailed study of this problem showed that the doubts had some grounds and were directly 
linked with the relatively delicate questions of averaging a smooth function over fractal sets, in particular, on 
Cantor set and its generalizations. But we cannot agree with final conclusion made in [12]: "no direct relation 
between fractional calculus and the fractals has been established yet". 

In order to dissipate these doubts and realize mathematically correct averaging procedure over fractal sets it 
was necessary to carry out a special study. This investigation has been given in the book [8], where the correct 
averaging procedure was considered in detail. The further generalization for more general Cantor sets has been 
realized in papers of Prof. Fu-Yao Ren with co-authors [13-15]. Another approach leading to the fractional 
integral and related to coarse graining time averaging is considered in the recent book [16]. Independent analysis 
of above-cited papers could lead to a conclusion that the physical meaning of the fractional integral with real 
exponent has been understood. Temporal fractional integral can be interpreted as a conservation of part of states 
localized on a self-similar (fractal) object if the physical system considered has at least two parts of different 
states. One part is distributed inside a fractal set (the conserved part of states) and another part of states is located 
outside of the fractal set (the lost part of states). That’s why it is easy to understand the fractional integral of one-
half order, when for its understanding any fractal object is not necessary. Half of states is lost automatically in 
diffusion process with semi-infinite boundary conditions [8]. From the geometrical point of view the temporal 
fractional integral is associated with Cantor set or its generalizations, occupying an intermediate position between 
the classical Euclidean point and continuous line. But the meaning of fractional integral with real fractional 
exponent is not complete in the light of recent papers [10], [17-20], where the correct understanding of different 
self-similar objects with complex fractal dimension is discussed. These interesting ideas forced the authors of this 
paper to reconsider their previous results obtained in [8] and gave a possibility to understand the 
geometrical/physical meaning of mathematical operator with complex fractional exponent. So the basic question, 
which we are going to consider and discuss in this paper, can be formulated as follows: how to come to 
understanding of fractional integral with complex fractional exponent through the correct averaging procedure of 
a smooth function over the temporal fractal set? We are going to show that details of averaging procedure 
developed in [8] will help us to find the answer formulated in the title of this paper. 

The following content of this article obeys the next structure. In the Section 2 we present the basic details of the 
averaging procedure including some new generalizations, which are absolutely necessary for further understanding. In Section 
3 following to the basic ideas of the scale-invariance objects with complex fractal dimension we justify the 
geometrical/physical meaning of imaginary part of the complex fractional exponent. In this section the results of numerical 
calculations are also given. They are important in understanding of the imaginary part of the complex fractional exponent. We 
found also geometrical structures leading to a ‘pure’ fractional integration containing only an imaginary part of the complex 
exponent. This investigation (considered in Section 4) helps to introduce passive two-pole elements with complex fractional 
exponent, realizing the fractional integration/differentiation operation in time domain. The last Section 4 includes also a brief 
consideration of kinetic equations containing complex fractional exponent. The basic results are collected and discussed in the 
final Section 5. 
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2. Procedure of averaging of a smooth function over the given fractal set 
2.1. Binary Cantor set and the temporal fractional integral 
Let us suppose that a physical value J(t) is related with a smooth function f(t) by means of convolution operation 

 0

( ) ( ) * ( ) ( ) ( )
t

J t K t f t K t f dτ τ τ= = −∫
, (1) 

where the function K(t) is determined on the segment [0,T] and can be expressed by using of the conventional step-
function 

 [ ]1
( ) ( ) ( )K t t t T

T
κ κ= − − . (2) 

Here  

 κ(t) = 
1, 0

0, 0

t

t

> <  (3) 

is the conventional Heaviside unit function. The constant 1/T in (2) appears as the result of the normalization of all states 
covered by the function K(t) to the unit value 

 
0

( ) 1
T

K t dt =∫ . (4) 

Laplace-image of K(t) with the use of retardation theorem  

 ( ) exp( ) ( )
LT

f t a pa f p− = − , (5) 

takes the form 

 
0

1 exp( )
( ) ( ) ( )exp( )

LT pT
K t K p K t pt dt

pT

∞ − −= ≡ − =∫ . (6) 

Here and below the symbol 
LT

=  means that the left and right side functions are related to each other by the conventional 
Laplace transform. 

In order to find the kernel ( )
,
N

TK ν (t) on the Nth stage of the Cantor binary set construction, having fractal dimension 

ν = ln2/ln(1/ξ) and concentrated on the interval [0,T], it is necessary to write the recurrence relation directly for the 
kernel ( )

, ( )N
TK tν  which coincides with the normalized density of the binary set 

 ( ) ( 1) ( 1)
, , ,

1
( ) ( ) ( (1 ) )

2
N N N

T T TK t K t K t Tν ξ ν ξ ν ξ− − = + − −  . (7) 

Here (0)
, ( ) ( )TK t K tν ≡  defined by (2). The height of each Cantor ‘stripe’ on the Nth stage is equaled to 1/(2ξ)NT and 

provides the conservation of normalization to the unit on each stage of its construction. 
In recurrence relation (7) and below the parameter ξ is the scaling factor, which shows the ‘degree of compressing’ 

(ξ < 1) of binary set on each stage of its construction. The values of ξ lie in the interval [0,1/2]. Now we are ready to 
find the answer for the following concrete question:  

What is the result of the convolution of the function f(t) with the normalized density ( )
,
N

TK ν (t) in the limit N → ∞, i.e 

 ( ) ( )( )
, ,( ) lim ( ) lim ( ) ( ) ( ) ( ) ?N

N T T
N N

J t J t K t f t K t f tν ν→∞ →∞
= = ∗ = ∗  (8) 

Here and below , ( )TK tν  is the limiting value of ( )
, ( ).N

TK tν  For further investigations of the last expression (8) it is 

convenient to use the Laplace transform of the function ( )
, ( ).N

TK tν  From recurrence relationship (7) we obtain  

 ( ) ( 1)
, ,

1
( ) [1 exp( (1 ))] ( )

2
N N

T TK p pT K pν ξ νξ −= + − − . (9) 

Repeating this procedure N time, we have  

 
( ) [ ]( ) ( )

, ,

1 exp
( ) ( ) (1 )

n
LT

N N
T T Nn

pT
K t K p Q pT

pTν ν

ξ
ξ

ξ
− −

= = − , (10) 

where  

 
1

0

( ) 2 (1 exp( ))
N

N n
N

n

Q z zξ
−

−

=

= + −∏ , (11) 

with z = pT(1 − ξ). 
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So, the Laplace-image of JN(p) accepts the form 

 
( )
,( ) ( ) ( )N

TJ p K p f pν=
. (12) 

For the large values of N (N � 1) and Re(pTξN) � 1 we have in the limit N → ∞ 

 [ ] ,( ) (1 ) ( ) ( ) ( )TJ p Q pT f p K p f pνξ= − = . (13) 

Here Q[pT(1 − ξ)] is the limiting value of the product (11). So, the limiting value of the integral kernel , ( )TK pν  is 

reduced to the investigation of the limiting value of the product (11).  
 
2.2. Generalization for an arbitrary self-similar process  
The last result (13) allows in generalizing of previous calculations for any self-similar process. One can notice that 
result (10) for ( )

, ( )N
TK tν  at N � 1 can be written in the form 

 ( ) 1
, ( ) ( / ) ( / ) ... ( / ) ( / )N N N

TK t t T t T t T K t Tν ξ ξ ξ−= ∆ ∗ ∆ ∗ ∗∆ ∗ . (14) 

Here  

 
[ ]

( ) ( )

1
( ) ( ) ( (1 ))

2
1

( / ) / ( / ) 1N N N
N

x x x

K t T t T t T
T

δ δ ξ

ξ κ ξ κ ξ
ξ

∆ = + − −

 = − − 
, (15) 

The analysis of formulae (14) and (15) prompts us to consider more general expressions for an arbitrary memory 
function K(N)(t) figuring in (14). Let us consider more general recurrenceсe relationship 

 ( ) ( 1)
1 1( ) ( ) ( )N N

N NK t g t K tβ α −
− −= ∗ . (16) 

Here g(t) is an arbitrary function, {αi-1}, { βi-1} ( i=1,2,...,N,...) are sets of the constants. Applying the Laplace transform 
to the last expression we have 

 
1

( )

0

ˆ( )
N

N n

n n n

p
K p g

β
α α

−

=

 
=   ∏ . (17) 

We took into account the relationship  

 
ˆ( )

( )
LT g p

g t
αα
α

= , (18) 

and initial condition 

 ( )(0)
0 0( )K t g tβ α= . (19) 

Relatively to product (17) we are making two suppositions: 
S1. We put  

 
1

n n nT
α β

ξ
= = , (20) 

and write product (17) in the form 

 
1 1 1

( )

( 1) 0 1

ˆ ˆ ˆ( ) ( ) ( ) ( )
N N N

N n n n

n N n n

K z g z g z g zξ ξ ξ
− − −

−

=− − = =

= =∏ ∏ ∏ . (21) 

Here we took into account the relationship (20) and extended the product also for negative values of n. 
S2. We suppose that Laplace-image of g(z) has the following decompositions  
 for Re(z) � 1 

 2
1 2ˆ ( ) 1 ...g z c z c z= + + + , (22) 

 for Re(z) � 1 

 1 2
2

ˆ ( ) ...
A A

g z g
z z

= + + + . (23) 

Mathematical calculations realized in [8] show that:  
(A) There is a limit of K(N)(z) 

 ( ) (ln( ))
lim ( ) ( )N

N

z
K z K z

z
ν

ν ν

π
→∞

≡ = , (24a) 

where  
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ln( )

ln( )

gν
ξ

= , (24b) 

and πν[ln(z)] is a periodical function with the period of lnξ  

 ( ) ( )ln( ) ln ln( )z zν νπ ξ π± = . (25) 

(B) The averaged value of the function πν[ln(pT)] over the period lnξ is defined by expression 

 ( )
1/ 2

1/ 2

( ) (ln( )) ln( ) lnC z z x dxν νν π π ξ
−

≡ = +∫ , (26) 

where the value of the constant C(ν) can be evaluated and equals  

 
0

ˆ1 1 '( )
( ) exp ln( )

ˆln(1/ ) ln( ) ( )

g g u
C u du

g g u
ν

ξ

∞ −=   ∫ . (27) 

(C) In the limit N → ∞ one can obtain 

 [ ] ( ) 1

0

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

tC C
J t K t f t D f t t f d

T T

νν
ν ν ν

ν ν τ τ τ
ν

−−= ∗ = ≡ −
Γ ∫  (28) 

the desired relation with the fractional Riemann-Liouville integral  

 
11/ 2

1/ 2

( )
( ) ( )

( )

x

x g C t
K t K t dx

T T

ν

ν ν
νξ

ξ ν

−
−

−

   ≡ =   Γ   ∫ . (29) 

In the partial case  

 
1 exp( )

ˆ( )
2

z
g z

+ −= , (30) 

for the binary Cantor set considered in the previous section the calculations give 

 

exp 1 ln 2
21

, ( )
2 ln(2)

g C

ν

ν

  − +    = = . (31) 

The basic result of this section (24) can be easily understood if we notice the fulfillment of the following 
relationship, which is exact for any finite N 

 ( ) ( )
1

( )
( ) ( )

( )

N
N N

N

g z
K z K z

g z

ξξ
ξ − += . (32) 

Taking into account the conditions (23) in the limit N → ∞ relationship (32) for the fixed N is reduced to the scaling 
functional equation of the type  

 
1

( ) ( )K z K z
g

ξ = , (33) 

having the solution (24) for any sequence {ξ: ξ1 ξ2…ξN …} distributed on any countable set. If the sequence {ξ} is 
continuous then we immediately restore the previous result [7] expressed by formulae (28) and (29). 

 
3. The fractional integral with complex exponent  
3.1. Consideration of the Cantor set with M bars. One mode approximation 
The principal result (24) obtained in the previous section for wide class of functions ˆ( )g z  with a variable z, which can 

accept real or complex values, helps to understand the meaning of fractional integral with the complex exponent. 
Following to ideas developed in [16] the periodical function with unit period can be expanded into the infinite Fourier 
series 

 
ln( ) ln( )

exp 2
ln( ) ln( )n

n

z z
C niνπ π

ξ ξ

∞

=−∞

   
=      ∑ . (34) 

Taking into account the definition (24b) for ν and the last expression one can present expression (24) in the form  

 ( )1 ln( )
( ) exp ln 2 exp ln( )

ln( )n n n
n n

z
K z C n i C i z

gν π ν
ξ

∞ ∞

=−∞ =−∞

   
= + = − + Ω          ∑ ∑ . (35) 

Here the real exponent ν is defined by expression (24b), Ωn = 2πn/lnξ is a set of frequencies providing a periodicity 
with lnξ of product (24a). Let us suppose that this infinite series can be replaced approximately by three terms 
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( )
( )

0

0 0

( ) exp( ln ) exp( ln )

cos( ln )

n n

i i
n n n

K z z C A i z A i z

z C A z C z A z A z

ν
ν

ν ν ν νψ

− ∗

− − − + <Ω> ∗ − − <Ω>

≅ + < Ω > + − < Ω >

= + < Ω > − = + +
. (36) 

Here <Ω> is the averaged frequency referring to the leading term with an averaged value of n and the complex 
amplitude An = Anexp(iψ). These parameters determine the contribution of the leading term in the corresponding 
series (35). The value <Ω> is defined as 

 
2

ln

nπ
ξ

< >< Ω >= . (37) 

For verification of expression (36) one can use the eigen-coordinates (ECs) method and consider the values C0, 
An, <Ω> and ψ as a set of the fitting parameters. As an initial product one can take Laplace expression for M Cantor 
bars obtained in [8] 

 
1 exp

1 1
( )

1 exp
1

M

zM

M
g z

zM
M

 − − − =  − − − 
. (38) 

In particular case M = 2 this generalized expression coincides with (30). The basic principles of the ECs method have 
been considered in papers [21-25]. So, it is not necessary to repeat here the basic ideas. Here we are giving only the ECs 
for the function  

 0( ) cos( ln( ) ), ( ) ( )ny z C A z K z z y zν
νψ −= + < Ω > − ≡ . (39) 

In accordance with the ideology of the ECs method expression (39) initially including some nonlinear fitting 
parameters ( ,ψΩ ) can be transformed identically into the basic linear relationship 

 1 1 2 2 3 3( ) ( ) ( ) ( )Y x C X x C X x C X x= + + . (40) 

Here 

 

( )

( )

0

2
1 1

2
2 0

2 2

2
3 3 0 0 0

( ) ...

( ) ( ) ... , ,

( ) ... , ,
2

( ) ... , '( )

x

x

Y x y

X x x u y u du C

C
X x x C

X x x C C x y x

= − < >

= − − < > = − < Ω >

< Ω >
= − < > =

= − < > = < Ω > +

∫
 (41) 

is a linear combination of some functions depending on the variable x = ln(z). Relationship (40) helps to find two 
important fitting parameters C0 and <Ω>. Other two parameters Anand ψ are found from another basic linear 
relationship 

 1 2( ) cos( ) sin( )U x A x A x= < Ω > + < Ω > , (42) 

where  

 0 1 2( ) ( ) , cos , sinn nU x y x C A A A Aψ ψ= − = = . (43) 

So, with the help of last expressions one can verify numerically the supposition (36) and calculate the necessary values 
of the fitting parameters C0, <Ω>, Anand ψ.  

Numerical calculations are realized by means of the following procedure: 
1. Calculation of the function y(x) in accordance with definition (39). 
2. Calculation of the fitting constants Ck (k=1,2,3) in accordance with linear relationship (40) by the linear least-

square method (LLSM). They should present a set of sloping lines if supposition (36) is correct. The sloping 
lines C1 and C2 for M = 2 are shown in Fig.1  

3. Calculation the necessary set of the fitting parameters (C0, <Ω>, An, ψ). The final verification of expressions (37). 
This final stage is presented by Figs. 2 and 3 respectively. 
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Fig.1. (a) Plot for the constant C1 calculated for number of bars M = 2. The sloping line indicates that the corresponding hypothesis for 
y(x) presented by (37) is correct. The tangent of the sloping line equals –5.85979. (b) Plot for the constant C2 calculated for M = 2. 
Again the sloping line indicates that the corresponding hypothesis for y(x) presented by expression (37) is correct. The tangent of the 
sloping line equals 1.88859. 

 

  
 

Fig.2. (a) Oscillating part of y(x) shown by open points and its fit (shown by solid lines) calculated with the help of the ECs method 
for M = 2. The values of the fitting parameters are collected in Table I. (b) Oscillating part of y(x) shown by open points and 
its fit (shown by solid lines) calculated by the ECs method for M = 7. The values of the fitting parameters are collected in 
Table I.  

 
Fig.3. Calculated values of the product corresponding to the function defined by expression (36) for different values of bars, which 

are defined by parameter M. Their fitting curves corresponding to function (37) are shown by solid lines. The values of the 
fitting parameters are collected in Table I.  

 

The values of the fitting parameters for various M and ξ are collected in Table I. These numerical calculations 
prove that supposition (36) is correct and physically reflects the true discrete structure of the fractal considered. It is 
interesting to note from analysis of the parameters given in Table I that the basic contribution to approximate expression 
(36) comes from the first Fourier components (<n> ≅ 1). Other parameters exhibit a monotonic behavior with respect to 
number of bars M. See, for example, Figs. 4a and 4b. 

 
Table I. The basic initial (the first 3 rows) and the fitting parameters (rest rows) obtained in the result of numerical 
verification of expressions (37) 

M ξ ν C0 A0 A1 Ω ψ <n> Stdev 
2 0.125 0.3333 0.63 0.0082 -0.0015 3.01161 -0.1748 0.9967 9.5E-5 
5 0.05 0.5372 0.6117 0.0217 0.028 2.09144 0.9068 0.9972 6.1E-4 
7 0.0357 0.584 0.6106 0.0252 0.0404 1.8853 1.0137 1.0000 8.3E-4 
10 0.025 0.624 0.609 0.0293 0.0533 1.7045 1.06874 1.0001 1.3E-3 
13 0.0192 0.6492 0.6074 0.0382 0.0621 1.5911 1.08429 1.1011 1.7E-3 
15 0.0167 0.6614 0.606 0.0353 0.0661 1.5331 1.08074 0.9991 2.1E-3 

 

(a) (b) 

(a) (b) 
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Based on Laplace image (39) it is easy to come back in time-domain generalizing the value of the fractional 
Riemann-Liouville integral for complex values of the fractional exponent. Using relationship [26] 

 
1

( )

LTt
p

α
α

α

−
−=

Γ
, (44) 

one can present expression (36) in the form 

 
1 1 1

0( )
( ) ( ) ( )

i i

n n

t t t
K t C A A

i i

ν ν ν

ν ν ν ν

− + <Ω>− − <Ω>−
∗= + +

Γ Γ + Ω Γ − Ω
. (45) 

 

  
 

Fig.4. (a) Dependence of the basic fitting parameters against the number of bars (M) is monotonic. Here we show the functions Ω(M) and 
ψ(M). (b) Dependence of the basic fitting parameters A0 = Acos(ψ) and A1 = Asin(ψ) against the number of bars (M) exhibits 
again a monotonic dependence. Other parameters are collected in Table I. 

 

It is easy to note that the first term in the last expression represents itself the evaluation of the kernel Kν(t) in the 
continual approximation, other two terms reflect the discrete scale invariance phenomenon existing for true 
discrete fractals. The averaging procedure (see expression (26)) developed in the book [2] leads to zero values for 
the two last terms and effect of a “fractal digitization” is disappearing. So, coming back to objections expressed in 
papers of R. Rutman [11,12] one can say that initially this effect was not noticed and a “naive” attempt to replace 
a discrete product (17) by its continuous analog can be considered as approximate. The correct replacement 
requires the additional averaging procedure (26) or consideration of the fractal periodical effect, which in the 
simplest form can be expressed by two additional terms figuring in expression (45). 

So, one can prove that the difference between random fractal, which accept any value of a scale from the given interval 
(0,T) and discrete fractal that accept only countable set of scales leads to phenomenon of discrete scale invariance [4,17-20]. This 
phenomenon is expressed in the form of log-periodical functions with period depending on the scaling parameter lnξ. The eigen-
coordinates method helps to identify the function y(z) (39) and find the necessary fitting parameters C0, <Ω>, Anand ψ.  

Attentive analysis of exact relationship (32) helps to find self-similar structures leading in time-domain to the 
complex fractional integral. Let us consider the additive sums of the following type appearing in averaging of a physical 
value over a discrete fractal structure [8] 

 
1

1

( ) ( )
N

n n
N

n N

S z b f zξ
−

=− +

= ∑ . (46) 

Here and below the variable z can accept any real or complex value. This sum for any finite N has the following scaling 
property 

 1 11
( ) ( ) ( ) ( )N N N N

N NS z S z b f z b f z
b

ξ ξ ξ− − − += + − . (47) 

If the function f(z) is chosen in a way that contribution of the last two terms in the limit N → ∞ becomes negligible then 
we obtain again the scaling equation of the type (33) with solution 

 ( ) 1 (ln( ))
( ), ( )

z
S z S z S z

b zν
πξ = = , (48) 

where π(ln(z)) again is a log-periodical function, satisfying to condition (25), ν = ln(b)/ln(ξ). Solutions of the scaling 
equations of more general type obtained by variation of arbitrary constants are considered in the Mathematical 
Appendix. For , 1g b = ±  in Eqns. (33), (48) ν = 0 and one can expect ‘pure’ log-periodical oscillations. For verification 

of these suppositions we chose two functions. 
For the product (32) the probe function has a form 

 ( ) 1 2cos( )exp( )n n ng z z zξ ξ ξ= − − , (49a) 

which for 0 < ξ < 0.5 provides the boundary conditions g(zξ-N) ≅ –1, g(zξ-N+1) ≅ 1. 
For the sum (46) with b = 1 the function has the form 

(a) 

(b) 
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(a) 

(b) 

 ( ) 1 cos( ) exp( )n n nf z z zξ ξ ξ = − −  ,  (49b) 

which for the same interval of the scaling parameter 
0 < ξ < 0.5 provides zero boundary conditions f(zξ-N) ≅ 0, 
f(zξ-N+1) ≅ 0. The set of Figs. 5 depict the desired 
oscillations obtained for ‘pure’ complex’ case with ν = 0. 
The parameters of the fitting function (39) for some values 
of ξ are given in Table II. Finishing this section one can say 
that possible complex solution of the scaling equation (33) 

always exist for one of the negative values 1( ), ( )N Ng z g zξ ξ − + . For this case we have the solution 

 
(ln( ))

( ) , (ln( ) ln( )) (ln( ))
z

K z z z
zν

π π ξ π= ± = −  (50) 

with ln(1/ ) / ln(1/ )gν ξ= . So, decomposition of the log-periodic function for this case into the Fourier series should 

contain only odd components  

 [ ] [ ]( ) ( ) ( ( ) )N
n

S z n F z n
β αϕ ϕ=∑ . (51) 

 
 

Table II. The calculated fitting parameters obtained for product (32) with function (49a) (the first nine rows marked bold) and 
sum (46) with function (49b) (the last eight rows).  
 

ξ C0 A0 A1 Ω ψ <n> Stdev 
0.1 -0.24E-4 0.486081 0.414370 1.361998 0.705923 0.499128 0.00964 
0.15 3.927E-5 0.410544 0.258893 1.653635 0.5626226 0.499293 0.005364 
0.2 -1.3E-5 0.33813 0.13424 1.94831 0.377924 0.499059 0.0038366 
0.25 6.88E-5 0.27102 0.046309 2.26341 0.1692346 0.499389 0.003052 
0.3 2.163E-6 -0.203831 0.017272 2.599207 0.08453686 0.49805546 0.003325 
0.35 -7.62E-7 -0.1404406 0.0481402 2.97784 0.330228 0.4975498 0.0031357 
0.4 1.948E-8 0.0820374 -0.057847 3.406445 0.6141585 0.4967693 0.0031405 
0.45 -1.63E-7 0.03623903 -0.0530627 3.901106 0.971607 0.495778 0.0033237 
0.5 2.288E-8 -0.006377 0.0374794 4.481137 1.402258 0.4943492 0.0029298 
0.1 0.150513 0.0284258 0.0630613 2.7203411 1.14731 0.996917 0.0023746 
0.15 0.1826834 -0.0031946 0.051340 3.29363 1.50865 0.994466 0.0015673 
0.2 0.21534 -0.020898 0.0292423 3.871489 -0.9503057 0.991682 0.001787 
0.25 0.25 -0.0227797 0.0068779 4.4808124 -0.2932225 0.9886267 0.0017665 
0.3 0.287858 -0.0130835 -0.0070482 5.1412523 0.4941338 0.985158 0.0017137 
0.35 0.33012601 -0.0011869 -0.0082609 5.867455 1.428099 0.9803601 0.0014721 
0.4 0.378235 0.0033914 -0.002246 6.6804012 0.585039 0.9742176 0.001067 
0.45 0.434027 0.0010721 0.0010717 7.6022915 0.785196 0.9661482 0.0006704 

 
3.2 Some generalizations 
Let us consider the sum or the product of the following type  

 [ ] [ ]( ) ( ) ( ( ) )N
n

S z n F z n
β αϕ ϕ=∑ , (52a) 

 ( )( ) ( ) ( )N

n

K z g z nαϕ= ∏ . (52b) 

It is supposed that the values of the discrete variable n is located in the interval, which keeps the real values of the 
function ϕ(n). These expressions can be transformed to the following forms 

 [ ] [ ]
1

( 1)

( ) ( ) ( ( ) ) ( )
N

K K
N

n K N

S z n F z n b F z
β αϕ ϕ ξ

−

=− −

= =∑ ∑ ,  (53a) 

Fig.5. (a) Numerical verification of the function (49a). Here we reproduce 
the product (32) calculated for ξ = 0.1, 0.15 and 0.5. The parameters 
of the fitting function defined by expression (36) are given in Table II. 
The range of variable z is located in the interval [0.1 ÷ 10000]. The 
function (25) at ν = 0 satisfies to condition: 

( ) ( )0 0ln( ) ln ln( )z zπ ξ π± = − . (b) Numerical verification of the 

function (49b). Here we reproduce the calculated values of sum (46) 
for ξ = 0.1, 0.15 and 0.35. The parameters of the function defined by 
(36) are given in Table II. The range of variable z is located in the 
same interval [0.1 ÷ 10000] 
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 ( )
1

( )

( 1)

( ) ( ) ( )
N

N K

n K N

K z g z n g zαϕ ξ
−

=− −

= =∏ ∏ . (53b) 

Here b = exp(β), ξ = exp(α), K = ln[ϕ(n)]. If the initial values of n are chosen in such a way that discrete values of K are 
located in the interval [– N + 1 ≤ K ≤ N – 1] then the mapping ϕ(n) = exp(K) keeps invariant all properties proved 
initially for product (32) and finite sum (46). So, one can say that fractional integral with real or complex exponent 
exists not only for genuine fractal structures. The mapping ϕ(n) = exp(K) considerably increases the results obtained for 
new type of structures, which can be reduced to the fractal ones on mesoscale region. It has a sense to define these 
structures as quasi-fractals structures. In particular, in chapter 8 of the book [8] we consider the model of coordination 
spheres, when n ≡ ϕ(n). As numerical verifications show the dependences Nn = N0n

α and Rn = R0 n
β approximate very 

well the number of particles Nn and their radiuses Rn as a function of a number of the current coordination sphere n 
(n = 0,1,2,…). The model of coordination spheres can be applied for calculation of number of particles for wide number 
of heterogeneous substances including clusters of different nature. No needless to say that similar quasi-fractal 
structures leading also to the fractional integral of the Riemann-Liouville type are needed in more detailed 
investigations as new potential objects figuring in mesoscale region. 

 
4. Recap and reind elements with complex exponents  
4.1. Possibility of existence of reind and recap elements with complex exponents 
In our book [8] it has been proved that self-similar structures combined from R (resistance), C (capacitance) and L 
(inductance) elements form passive two-poles, which we defined as recap (resistance + capacitance) and reind 
(resistance + inductance) elements. Their impedances are expressed in the form 

 
( )
( )

( ) (0 1)

( ) (0 1)

Z j R j

Z j R j

ν
ν

ν
ν

ω ω ν

ω ω ν

−= ≤ ≤

= ≤ ≤
. (54) 

The first expression defines the complex impedance of recap; the second one belongs to reind element. All analytical 
evaluations, which lead to expressions (54) were performed in the continual limit [8]. One can expect that calculations 
realized for true discrete structures will contain log-periodic functions, reflecting discrete scale invariance phenomenon. 
In fact, these log-periodic functions are contained definitely as solutions of the scaling equation 

 ( ) ( )z b zξΦ = Φ , (55) 

if parameters b and ξ form independent countable sets [8]. For other fractal structures, which are not satisfied to 
functional equation (55) the existence of log-periodic solutions needs in a special investigation. Consider, for example, 
the chain of two elements: resistance R and capacitance Z = R/(jωτξ n) (τ = RC, ξ < 1) connected in series. The total 
admittance of these elements (-N + 1 < n < N – 1) connected in parallel is expressed in the form [2] 

 ( )1
( ) 1 ( )N NY z S z

R
= − . (56a) 

If these two elements R and Z = R/(jωτξ n) (τ = RC, z = jωτ) are connected in parallel, then the total impedance of these 
elements connected in series is expressed in the form 

 ( ) ( )N NZ z RS z= . (56b) 

For ‘extraction’ of log-periodic solutions we consider the sum 

 
1

( 1)

1
( )

1

N

N n
n N

S z
zξ

−

=− −

=
+∑ , (57) 

figuring in both expressions (56). According to expression (47) we have the following scaling equation (if f(zξ N) ≅ 1, 
f(zξ-N+1) ≅ 0 ) 

 ( ) ( ) 1S z S zξ = + . (58) 

Solution of this equation (see Mathematical Appendix) can be written in the form 

 ( ) ln( )
( ) ln( )

ln

z
S z zπ

ξ
= + . (59) 

Figs. 6a and 6b show the results of numerical verification of solution (59). In Fig. 6a we depict the situation, when possible 
oscillations are completely hidden and suppressed totally by the second term ln(z)/ln(ξ). After subtraction of the second term in 
(59) possible oscillations evoked by discrete circuit structure become visible. Oscillations S(z) – ln(z)/ln(ξ) shown on Fig. 6b are 
described well by the fitting function  

 
( ) *

0 1 1ln( ) exp( ln( )) exp( ln( ))

2

ln(1/ )

z C C i z C i z

n

π
π

ξ

= + < Ω > + − < Ω >
< >< Ω >=

, (60) 
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with the following values of the fitting parameters ξ = 0.1, C0 = 34.5, C1 = A1exp(iψ) (A1 = -3.19382E-5, ψ = 1.53985, 
<n> = 0.996368, <Ω> = 2.71884). The standard deviation of the absolute difference between the left and the right parts of 
expression (60) equals Stdev = 1.45291E-5. 
 

  
 

Fig.6. (a) The calculated sum defined by expression (59) (gray points) and the fitting function (solid line) defined by expression 
y(z) = ln(z)/ln(ξ) + B (ξ = 0.1, B = 34.5115). In this presentation a possible discrete structure is completely hidden. In order to see 
possible oscillations it is necessary to analyze the difference expressed by (60). (b) The log-periodic function and its fitting (expression 
(60)) obtained by the ECs method. The fitting parameters calculated for ξ = 0.1 are given in the text.  

 

In more general cases for discrete self-similar structures one can write the following generalization of expressions 
(54) 

 
( ) ( ) ( )

( ) ( ) ( )

( ) (0 1)

( ) (0 1)

j j

j j

Z j R j C j C j

Z j R j C j C j

ν ν ν
ν

ν ν ν
ν

ω ω ω ω ν

ω ω ω ω ν

− − + Ω − − Ω∗

+ Ω − Ω∗

 = + + ≤ ≤ 
 = + + ≤ ≤ 

 (61) 

Here R is a dimension value, C is a dimensionless complex constant of the order of unity, Ω is a leading frequency 
defined by expression (60). The structure of expressions (61), when terms containing complex exponents form a 
complex-conjugated pair follows from general expression (34). 

The existence of the generalized expressions (61) is confirmed by numerical calculations but it would be 
interesting to discover this behavior in real experimental situations analyzing impedances/admittances frequency 
behavior of various heterogeneous structures. 

 
4.2. ‘Strange’ fractal kinetics 
A strong evidence has been presented earlier [9,27,28] that the generalized kinetic equations containing fractional derivatives 
and integrals describe well raw dielectric spectroscopy (DS) data, which, in turn, are related to measurements of complex 
permittivity in frequency domain. For this aim the special recognition procedure has been developed. It includes a presentation 
of DS data in the so-called ratio format. The special separation procedure helps to identify the number of relaxation processes 
and determines at least qualitatively the possible structure of fractional equation describing the relaxation of the total 
polarization in time-domain. Experimental DS data are described very well by complex permittivity functions, which 
correspond to new identified kinetic equations with fractal derivatives in time-domain. As a basic result, which follows from 
this new approach one can obtain a new interpretation of the empirical Vogel-Fulcher-Tamman (VFT) equation together with 
its possible corrections [27]. This equation taken in the conventional and generalized forms describes the temperature 
dependence of low-frequency loss peak for wide class of heterogeneous materials. These papers can be considered as an 
essential argument that "fractal" kinetics really exists in nature. These identified and recognized kinetic equations have the 
following forms 

 
( ) ( )

( ) ( )

1 1 2 2

0 0

1 1 2 2

0 0

1 2 0

1

1 2 0

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

t t

t t

D D P t P t P t

D D P t P t P t

ν ν ν ν

ν ν ν ν

τ τ

τ τ
−− − − −

+ − + =

+ − + =
 (62) 

Here P(t) is a value of the total polarization, τ1,2 are characteristic relaxation times, ν1,2 are fractional exponents located 
presumably in the interval [0,1]. It is interesting to mark that the second equation in (47) contains a linear combination 
of fractional integral operations, but this combination taken in inverse degree gives again a specific fractional 
derivative. The stationary solutions of these equations lead to the following expressions for complex susceptibility.  

 
( ) ( )

( ) ( )

1 2

1 2

1 2

1
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(0)
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(0)
( ) .
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j
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ε εε ω ε
ωτ ωτ

ε εε ω ε
ωτ ωτ

∞
∞

∞
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−
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+ +
−
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 (63) 

(a) (b) 
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These expressions help to give a new interpretation of the VFT equation. This statement is confirmed by independent 
verification of randomly taken (from various international dielectric laboratories) raw DS data measured for complex 
permittivity. 

These identified kinetic equations can be easily generalized. More general form of kinetic equation which can be 
considered as a potential candidate for description of DS complex permittivity data in wide class of heterogeneous 
materials can be written in the form 

 ( )( )
0 0

1

( ) ( ) ( ) 0k k

n

k t
k

D P t P t P tν ντ
=

− + =∑ . (64) 

In partial cases (n = 1, ν = 1 and n = 1, ν ≠ 1) the last kinetic equation for the total polarization P(t) coincides 
correspondingly with the known kinetics of the Debye's and Cole-Cole's type. The physical meaning of the last kinetic 
equation is the following. We suppose that all relaxation system including a set of strongly correlated microdipoles can be 
divided on n subsystems. It might be a set of dipole clusters or ensemble of strongly correlated molecules. Each subsystem is 
interacting with thermostat with the help of collision/rotation mechanism, which is expressed by means of fractional 
derivative. Each subsystem k (k = 1,2,…,n) is characterized by own characteristic relaxation time τk showing the contribution 
of the chosen relaxation unit into the general process of relaxation. The number of subsystems, giving an additive contribution 
to the general picture of relaxation, is defined by a structure of the concrete heterogeneous material considered. At an initial 
stage the kinetic equation (64) can be considered as a reasonable and phenomenological hypothesis, which is recognized from 
correct treatment of DS data. After identification of this type of kinetic equation on a wide class of heterogeneous materials 
the further theoretical attempts should be undertaken in explanation of their microscopic origin. Probably, it will require the 
generalization of the Liouville equation for density matrix and introduction of new ideas related to irreversibility of time. At 
the present stage we suppose that this equation describing the relaxation of the total polarization in a bulk material can serve a 
basis of signal processing in the modern dielectric spectroscopy. 

Now it becomes clear how to generalize the identified kinetic equation of the type (62) for the complex fractional 
exponents and clarify their physical meaning. Let us suppose that discrete scale structure in the heterogeneous material 
considered is conserved. The reasons of conservation of a discrete structure in some concrete material need a special 
consideration. If some materials exhibit the discrete scale invariant (DSI) property then it is necessary to replace a real 
fractional exponent by the triad of the following type 

 
0 0 0 0

k k k k k k k k k k k kj j j j
k t k t k t k tD D C D C Dν ν ν ν ν ν ν ντ τ τ τ+ Ω + Ω − Ω − Ω∗⇒ + + . (65) 

The last two terms in (65) reflect the influence of a possible DSI property of a self-similar structure into the general 
process of relaxation. Physically this replacement can be interpreted as relaxation process taking place on a discrete log-
periodical structure with a basic mode <Ω> and having the statesν, which are kept on this structure. For random fractals 
the effect of log-periodicity is lost and only the real part of the total complex exponent is conserved. So, one can see the 
close relationship between geometrical (structural) and physical (relaxation) properties taking place on log-periodical 
self-similar structures. The most fascinating thing which follows from this generalization is the prediction of a ‘strange’ 
(unusual) kinetics, when the complex exponents accept a weak dependence on time. The contribution of one complex 
exponent coming from a genuine discrete structure into the general picture of relaxation can be presented in the form 

 
( )( )

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0( ) ( )

( ) 0

t t t j t t j t t j t t j t
t t tD C D C D P t P t

P t

ν ν ν ν ν ντ τ τ+ Ω + Ω ∗ − Ω − Ω+ + − +

+ =
. (66) 

The kinetic equations of the type (64) and (66) with possible inclusion and evolution in time of complex fractional 
exponents (if their existence will be definitely proved in the nearest future) can require a deep reconsideration of the 
basics of the modern nonequilibrium statistical mechanics. We suppose that understanding of the physical meaning of 
complex fractional exponent opens new directions not only for dielectric spectroscopy, where the corresponding kinetic 
equations containing fractional integral/derivatives have been identified. It will give a stimulus for other branches of 
physics and chemistry of heterogeneous materials, where the discovery of fractional kinetics with any value of 
derivative (including the complex exponents) is still waiting its proper time. 
 
5. Results and discussion 
Based on the scale invariance property, which exists for fractals with clearly expressed discrete structure, it becomes 
possible to understand the geometrical/physical meaning of the fractional derivatives and integrals with complex 
fractional exponents. The true form of this complex structure, which can enter into kinetic equation with fractional 
derivative, has been found. These kinetic equations can solve the problem of the correct deduction of irreversibility 
phenomenon for linear systems. The fractional derivative with complex exponent should enter into a linear kinetic 
equation as a structure containing three basic terms. The first term reflects a possible continuous structure. Other two 
complex-conjugated terms reflect a log-periodicity of a scale, which forms the discrete fractal structure considered. This 
complex triad structure is confirmed by numerical calculations. We found also possible structures when real exponent 
ν = 0. It can be happened at consideration of sum (46) at b = 1 and product (32) when one of the limiting value becomes 
negative or these values in asymptotic limit coincides with each other. We found also quasi-fractal objects, which keep 
invariant the Riemann-Liouville definition of the fractional integral with real and complex exponents. These objects 
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considerably increase the applicability of the conception of the fractional integral obtained previously for true fractal 
structures. The understanding of geometrical meaning of complex fractional exponents helps to generalize the 
conception of recap and reind elements and put forward an idea of existence of kinetic equations with complex 
fractional derivatives. The conception of the fractional exponent helps to understand deeper the principal difference 
between discrete and continuous organization of a matter on mesoscale region and identify a set of genuine discrete 
self-similar structures, taking part in transfer and relaxation processes. 
 
Mathematical Appendix  
The solution of the generalized scaling equations 
Here we want to generalize scaling equations of the type (32) and (47) and give their solutions obtained by the method of an 
arbitrary constant variation. Another method of finding of solutions of some set of scaling equations was considered in [29].  

At first, one can notice that it is easier to obtain solutions of the generalized scaling equation (47). The corresponding 
solution of the generalized equation (32) is obtained by ordinary exponentiating. In the Table III given below we use the 
following notations: π(ln(z)) is a log-periodic function, which in the most cases can be expressed in the form 

 
( ) *

0 1 1ln( ) exp( ln( )) exp( ln( )),

2

ln( )

z C C i z C i z

n

π
π

ξ

= + < Ω > + − < Ω >
< >< Ω >=

.  (A1) 

The fitting parameters of this function can be found with the help of the eigen-coordinates method.  
 
Table III. 

Scaling Equation Solution Comments 
1.  
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K(z) can be 
considered as scaling 
equation for the 
stretched 
exponential function. 

2.  
(b ≠ 1) 

0( ) ( ) ln( )S z bS z a z cξ = + +  

[ ]0( ) ( )
bc aK z e z K zξ =  
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( )
1
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k
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and obtain the 
corresponding 
solution. 

 
The variable z accepts any value and can be real or complex, ν = ln(b)/ln(ξ).  
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