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Starting from the three-band p-d Hubbard Hamiltonian we derive the effective t-J model Hamiltonian including electron-
phonon interaction of quasiparticles with optical phonons and strong electron correlations. We consider two possible cases 
when the carriers move over the oxygen sites and also if the they move over the copper sublattice. Most importantly, we find 
that the phonon renormalization of t is quite different in both cases. Within an effective Hamiltonian we analyze the influence 
of phonons on the dynamical spin susceptibility in layered cuprates. For example, we find an isotope effect on resonance peak 
in the magnetic spin susceptibility, Im χ(q,ω), seen by inelastic neutron scattering. It experimental observation would be a 
strong argument in favor of polaronic character of the carrier motion in layered cuprates.  
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Introduction 
An understanding of the elementary and the spin excitations in high-Tc cuprates is of central significance. For example, 
it is known that the Cooper-pairing scenario via the exchange of antiferromagnetic spin fluctuations was quite success-
ful in explaining the various features of superconductivity in hole-doped cuprates such as 2 2x y

d
− -wave symmetry of the 

superconducting order parameter and its feedback on the elementary and spin excitations [1]. Most importantly, in this 
scenario the dynamical spin susceptibility, χ(q,ω), controls mainly the superconducting and normal state properties of 
the layered cuprates [1]. One of the key experimental fact in the phenomenology of high-Tc cuprates is the occurrence 
of a so-called resonance peak in the inelastic neutron scattering (INS) experiments [2,3]. It occurs below Tc in the dy-
namical spin susceptibility, χ(q,ω), at the antiferromagnetic wave vector Q = (π,π) and ω ≈ ωres which is of the order of 
40 meV in the optimally doped cuprates. Its feedback in various electronic properties like optical conductivity, Raman 
response function, and elementary excitations has been observed experimentally by various techniques [1]. Further-
more, its successful explanation within spin-fluctuation-mediated Cooper-pairing together with 2 2x y

d
− -wave symmetry 

of the superconducting order parameter favors this scenario as a basic one for superconductivity in the cuprates. On the 
other hand, recent experiments indicate that also electron-phonon interaction influences strongly their behav-
ior [4,5,6,7]. In particular, the observation of the relatively large isotope effect in various characteristics of cuprates like 
penetration depth [4], ’kink’-structure seen by ARPES [8], and the isotope effect on the EPR linewidth [9] still raises a 
question: what is the role of phonons in determining the superconducting properties of cuprates?  

Here, we derive an effective t-J Hamiltonian where the hopping integral, t, and the superexchange interaction be-
tween neighboring spins, J, are renormalized by phonons. We analyze the influence of the electron-phonon interaction 
on the dynamical spin susceptibility in layered cuprates. In particular, we find an isotope effect on the resonance peak in 
the magnetic spin susceptibility, Imχ(q,ω). It results from both the electron-phonon coupling and the electronic correla-
tion effects taken into account beyond random phase approximation (RPA) scheme. We show that even if the supercon-
ductivity is driven by the magnetic exchange the characteristic energy features of cuprates can be significantly renor-
malized by the strong electron-phonon interaction. 
 
1 Effective Hamiltonian 
We start from the atomic limit of the three-center (copper-oxygen-copper) p-d Hamiltonian  

 
0 a b c

a a b b c c
a b c q q q

H a a b b c c

U n n U n n U n n p p

σ σ σ σ σ σε ε ε

ω

+ + +

+
↑ ↓ ↑ ↓ ↑ ↓

= + + +

+ + + +
∑ ∑ ∑

∑  (1) 

where εa,b and εc are the on-site energies of the copper and the oxygen holes, an a aσ σ σ
+=  and bn b bσ σ σ

+=  are the copper 

3d and oxygen 2p hole densities for site i, respectively. Ua = Ub and Uc refer to the on-site copper and oxygen Coulomb 
repulsion, respectively. pq denotes the phonon creation operator and ωq is a phonon energy dispersion. The hopping 
term between copper and oxygen  

 2 ( ) ( )ij i j j i ij i j j iH t b c c b t a c c aσ σ σ σ σ σ σ σ
+ + + += + + +∑ ∑  (2) 

and the electron-phonon interaction  

 1 ( ) ( ) ( )a b c
a q q b q q c q qH F g n p p g n p p g n p p+ + +

− − −= = + + + + +∑ ∑ ∑ , (3) 

we consider as a perturbation. Here, ijt  is a hopping term between copper and oxygen, lg  is a electron-phonon coupling 

strength at the site l. This notation is similar to the simplified Holstein model where the migrating charge interacts lo-
cally with breathing phonon modes forming electron-vibrational states. 

 
General remarks on the perturbation theory. To derive an effective t-J Hamiltonian we employ the canonical Schrieffer-

Wolf-like transformations S Se He−  [10,11]. For determination of the S-matrix we perform the following iteration procedure  

 1 2 3 4 5S S S S S S= + + + + , (4) 

where the indexes 1,2,3,4 and 5, correspond to the first, the second, and so on iterations, respectively. For example, the 
term lS  is determined by the following chain of equations 

 [ ] [ ] [ ]0 1 2 0 2 1 1,H S H H S H S= − = −
, 

 [ ] [ ] [ ]0 3 1 2 2 1 1

1

3
H S H S H S S = − −   , 

 [ ] [ ] [ ] [ ]0 4 1 3 2 1 2 2 2 1

1 1

3 3
H S H S H S S H S S   = − − −    , (5) 

 
[ ] [ ] [ ] [ ]

[ ] [ ]

0 5 1 4 2 1 3 2 3 1

2 2 2 2 1 1 1 1

1 1

3 3
1 1

3 45

H S H S H S S H S S

H S S H S S S S

   = − − − −   
     − +     

, 
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where [AB] = AB – BA are the commutator relation. Then, an effective Hamiltonian for the ground state configuration 
including sixth order perturbation theory terms can be written  

 0 1 2 2 2

1 1 1
[ ] [[[ ] ] ] [[[[[ ] ] ] ] ]

2 24 144effH H H H S H S S S H S S S S S= + + − + . (6) 

Note that using the decomposition (4) one can easily select the different items corresponding to the various orders of 
the perturbation theory. Quite generally we would like to mention that H2 is a part of the Hamiltonian which matrix ele-

ments are nonzero between the excited and the ground state configura-
tions. It is assumed that the energy distance between the excited and 
the ground state configurations is large enough with respect to H2. On 
the other hand, H1 is a term which acts within the quasi-degenerate 
states of the excited and the ground state configurations. We also pos-
tulate that the energies associated with H1 are smaller than the energy 
distance between the excited and the ground state configurations. 

 
Polaronic reduction factor of hopping integral between cation 

sites. Let us consider first the correction to the hopping integral be-
tween cation (copper) sites (a and b) via intermediate anion (oxygen) 
site (c) shown in Fig. 1. In this case the large energy interval is 
∆ac = εc – εa – Ua and it is further assumed that ωa < |∆ac| and 

∆ac � ∆bc. The first term in the renormalization of the effective hopping integral by electron-phonon interaction appears 

in the fourth order of the perturbation theory, namely, in the 
2 3

1
[ ]

2
H S  which is quadratic with respect to the electron-

phonon coupling operator  

 
3 3

2 2
2 2

1 1 1 1
 [ [ ]] . .

2 2 ac cb c a
ca ca

H F F H h c t t g g b aσ σ
+     − + = − +     ∆ ∆   

, (7) 

and the effective hopping integral between the (a) and (b) states can be written as:  

 
2 2 2

2 2
( ) 1ac cb a a c

b a
ab a ca

t t g g g
t eff

ω→

 +
= − + ∆ ∆ 

. (8) 

Note, the second term in the brackets has been included according to the usual polaronic theory when the intermedi-
ate step of charge transfer process via the oxygen site is ignored [11]. Taking into account the next orders of the perturba-

tion theory one finds { } ( )2 2 2 2 2exp 1ab a a a a a c caE g g gγ ω ω− ≈ − + + ∆  and thus  

 
2

( / )
1 a c a c

a a
ca

E Eω ωγ ω
 +

= − ∆ 
. (9) 

Here, we use 2
i i ig Eω= , i = a, b. Note, the exponential factor is reduced by the factor aγ . On the other hand, the de-

pendence of the effective hopping integral on the quasiparticle mass slightly enhances. For example, for the oxygen iso-
tope coefficient determined by ln[1/ ( )] lnm abd t eff d Mα = −  we obtain  

 
2

02
a a

a
a ac

E ωα γ
ω

   = − +  ∆   
, (10) 

where 0γ  is an empirical factor 00 1γ< < . According to the recent experiments in 0.8 0.2 3La Ca MnO  the isotope coeffi-

cient was found to be 1.2mα −�  [12]. In particular, Eq. (10) agrees with the experimental observation, if we assume 

that the carriers (electrons) move over the manganese positions. 
 

Effective hopping integral between oxygen states. Let us now turn to the discussion of the renormalization of the 
effective hopping between the oxygen positions. Note, in the cuprates it seems to play the most important role, since the 
effective carries are supposed to move over the oxygen positions rather on the copper ones. The corresponding process 
is illustrated in Fig. 2.  

Using the similar procedure as before we find  

Fig. 2: Illustration of the first step in the effective hopping between the oxygen 
sites (c and d) via the intermediate copper position (a). In the ground 
state configuration (O2–-Cu2+-O–) there are two holes on the a and d-
sites, respectively. The excited state configuration corresponds to (O–-
Cu+-O–) 

Fig. 1. Illustration of the effective hopping between the cop-
per sites (a and b) via the intermediate oxygen posi-
tion (c). In the ground state configuration (Cu3+-O2–-
Cu2+) there are two holes on the a site and one hole 
on the b site. The excited state configuration corre-
sponds to (Cu2+-O–-Cu2+) state 
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2 2 2

2 2
( ) 1

2
da ac c a c

d c
da c da

t t g g g
t eff

ω→

 +
= − + ∆ ∆ 

, (11) 

and 

 
2 2

2
1

2
a c c

cd
cda

g g

E

ωγ +
= −

∆
. (12) 

Note, the factor 1/2 appears because instead of 1c cσ σ
+〈 〉 =  we presently have 1/ 2a aσ σ

+〈 〉 = . For the oxygen isotope co-
efficient we also have  

 
24

a a
cd

ca

E ωα −
∆

�  (13) 

where ∆ca = εc – εa. Note, the expected isotope effect is quite small. This is in contrast with those expected for the cuprates [16]. 
We will return to this problem later in the text. 
 

Superexchange interaction. Let us also consider the charge transfer process suggested by Anderson [13] leading 
to the appearance of the superexchange interaction illustrated in Fig. 3. In particular, the phonon related correction to 
superexchange operator  

 0[( ) ]
4
a b

ex a b

n n
H J S S= −  (14) 

appears in the sixth order of the perturbation theory and has the following operator form  

 

{ }

{ }

(6) (3)
2 1 1 2 1 1 2 2 1 1 2 2 1 1 23 2 3

2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 23 2

1 1
(1) [ , [ , ]] [ [ , ]] [ [ , ]]

2 2

1
[ , ][ , ] [ ,[ , ]] [ [ , ] [ ][ , ] . .

2

eff
ca a ca a

ca a

H H H H S H F H H F H H F F H H H H H F F H H
U U

H H H F H F H H H H F F H H H F F H H H FH F H H h c
U

= + + + +
∆ ∆

+ + + + +
∆

 (15) 

In a general case, from 0 1 2[ ]H S H= −  we deduce that  

 
( ) ( )
( ) ( )

1 1 2

3 4

a a a a

c c c c a c a c c a c a

S C a c c a C n a c n a c c a n c a n

C a c n a c n n c a n c a C n a c n n a c n n c a n n c a n

σ σ σ σ
+ + + + + +

↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑

+ + + + + + + +
↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↑

= − + + − − +

+ + − − + + − −
, (16) 

where ( )1 ca c aC t ε ε= − , ( )2 1a c a aC U C Uε ε= − − , ( )3 1c a c cC U C Uε ε= − − , and 

( ) ( )4 2 3c a c a a cC C U C U U Uε ε= − − − − +  Note, the first term describes the hopping of the electron between empty states. 

On the other hand, the first and second terms together account for hopping between the doubly occupied a and the empty c 
states. Namely, ( )1 2 ca c a aC C t Uε ε+ = − − . Finally, the first and third terms describe the hopping between the doubly occu-
pied c and empty a sites, i.e. ( )1 3 ca c a cC C t Uε ε+ = − + . 

The solution of the equation 0 2 1 1[ ] [ ]H S H S= −  has the same operator form as for 1S  but with new coefficients 
' ' ' '
1 2 3 4, , ,C C C C  which are determined by  

 

' 1
1 ( )a c

c a

C
C

ε ε
= Φ − Φ

−  

 
'

' 1 2
2 ( )a

a c
c a a c a a

U C C
C

U Uε ε ε ε
= + Φ − Φ

− − − −
 (17) 

 1 3
3 ( )c

a c
a c c a c c

U C C
C

U Uε ε ε ε
′

′ = − Φ − Φ
− − − −

 

 2 3 4
4 ( )c a

a c
c a a c c a a c

C U C U C
C

U U U Uε ε ε ε
′ ′−′ = − + Φ − Φ

− − + − − +
 

where ( ) ( )a c a q q c q qg p p g p p+ +
− −Φ − Φ − = + − +∑ ∑ . Note, one finds here 1 2 3 4C C C C′ ′ ′ ′+ + + =  

2( ) ( )ca a c c a c at U Uε ε= Φ − Φ − + −  Finally, the equation 

0 3 1 2 2 1 1[ ] [ ] [[ ] ] 3H S H S H S S= − −  yields the S3 in the form of S1 but also 

Fig. 3: Illustration of the superexchange interaction in the cuprates. The ground 
state configuration is characterized by the following configuration (Cu2+-
O2–-Cu2+) where two holes distributed on the two copper positions (a and 
b). In the excited state there are two configurations (Cu2+-O–-Cu+) and 
(Cu3+-O2–-Cu+). The hole is first migrating from site b to the oxygen site c 
and then to the copper site a. Note, that at ∆ac ≈ Ua > |tca| the hopping 
Hamiltonian containing tbc  can be included into H1 
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with new coefficients 

 

1
1 ( )a c

c a

C
C

ε ε
′

′′= Φ − Φ
−  

 1 2
2 ( )a

a c
c a a c a a

U C C
C

U Uε ε ε ε
′′ ′

′′ = + Φ − Φ
− − − −

 (18) 

 1 3
3 ( )c

a c
a c c a c c

U C C
C

U Uε ε ε ε
′′ ′

′′ = − Φ − Φ
− − − −

 

 2 3 4
4 ( )c a

a c
c a a c c a a c

U C U C C
C

U U U Uε ε ε ε
′′ ′′ ′−′′ = − + Φ − Φ

− − + − − +
 

It is also useful to point out that  

 2 3
1 2 3 4 ( ) ( )ca a c c a c aC C C C t U Uε ε′′ ′′ ′′ ′′+ + + = − Φ − Φ − + − . 

The other commutators are calculated straightforwardly  

 [ ]2, ( ) ( )a c acF H t a c c aσ σ σ σ
+ += Φ − Φ −∑  

 [ ]1, ( ) ( )b c bcF H t b c c bσ σ σ σ
+ += Φ − Φ −∑  (19) 

 [ ]1 2, ( ) ( )a b ac cbF H H t t b a a bσ σ σ σ
+ += Φ − Φ −∑  

 [ ]1 1 2, ( ) ( )a c bc ac cbF H H H t t t b c b a a b c bσ σ σ σ σ σ σ σ
+ + + += Φ − Φ −∑  

and the effective Hamiltonian in the sixth order of the perturbation theory has the form  

 

2 2
(6) 2 2

2 2

2 2 2
2

3
(1)

2

2 1
. .

ac cb
eff a c

ca a ca

a a b

ca a a

t t
H

U

a b b a h c
U U

+ +
↓ ↓ ↓ ↓

  = 〈Φ 〉 + 〈Φ 〉 +  ∆ ∆
 + 〈Φ 〉 + 〈Φ 〉 + 〈Φ 〉 + ∆ 

 (20) 

where 2
i〈Φ 〉  are the usual averaged phonon factors 2 2(2 1)i i qg n〈Φ 〉 = + =  2 2coth( 2 )i i b ig k T gω= ≈ . Introducing the po-

laronic energy 2 /i i iE g ω=  we arrive to the final formula for the superexchange integral  

 
0 2 2 2

33 2 2
1 c

a a c
ca aca a ca

E
J J E

U U
ω ω

   = + + + +  ∆∆ ∆   
. (21) 

For simplicity we assume a and b centers to be equivalent, J0 is the superexchange interaction without polaronic effects. 
Note, the term 22 a aUω  was found earlier by Kugel and Khomskii [11]. The present result explains well the isotope 

shift of Neel temperature in undoped compounds [28]. 
To summarize, the matrix of the unitary transformation for the initial Hamiltonian was found by excluding the odd 

terms with respect to the hopping integral with an accuracy up to the sixth order perturbation theory. Note, in the second 
order perturbation the effective hopping integral, tij, appears.  

It is further renormalized by the electron-phonon interaction in the fourth order term where we introduce the aver-
age over the phonons. Similarly, the superexchange interaction occurs in the fourth order perturbation theory and its re-
normalization takes place in the sixth order term. 

 
Singlet-correlated band model. In order to illustrate the effective model we show in Figs.4-5 the simplified energy 

level scheme for two holes in the elementary unit cell. There are two copper upper and lower Hubbard bands with the 
energy splitting of about 6eVaU ∼ . At half-filling the lower Hubbard band is completely filled which corresponds to 

Cu2+(3d9) orbital configuration. Via doping an additional oxygen hole O–(2p5) resides on four neighboring oxygen sites 
(bonding molecular orbitals). The charge transfer gap 1.5eVac∆ ∼ . A kinetic exchange interaction between copper and 

oxygen holes occurs due to a virtual hopping back and forth of the oxygen hole to the upper copper Hubbard band.  

 2 6 1.5
( )

4
p dpd

ex p d
a pd ac c

n n
H t

U Uσ

   
+ −   − ∆ ∆ +    

s s� . (22) 

Since the copper-oxygen transfer integral along σ-bond is large ( 1.2eV)tσ ∼ , 

this exchange coupling is very strong and leads to a copper-oxygen singlet formation 
[15]. An additional stabilization of the copper-oxygen singlet state takes place (about 

Fig. 4: Illustration of the copper-oxygen singlet formation on the square lattice. 
The additional doped hole cannot go to the copper site due to strong on-site 
Coulomb repulsion and is distributed among four oxygen sites forming to-
gether with the copper spin a Zhang-Rice singlet 
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0.5 eV) if one assumes that the lifetime of the singlet at a lattice site i is larger than the relaxation time of the 
local distortions. Indeed due to a local oxygen contraction around the copper the value of 2tσ  strongly in-

creases. Thus, one arrives to the copper-oxygen singlet polaron motion with an exponential factor 

a aEγ ω∗ ∗ ∗ . 

Finally, the relevant effective Hamiltonian is given by  

 , , ( )
4
i jpd pd

ij i j ij i j
ij i j

n n
H t Jσ σ

>

 
= Ψ Ψ + −  ∑ ∑ S S . (23) 

The index pd corresponds to a Zhang-Rice singlet formation with one hole placed on the copper site whereas the second 

hole is distributed on the neighboring oxygen sites [15]. Namely, , , ,0 , ,0 2pd
i i i i iX P X P↑ ↑ ↓ ↑ ↑ ↑ ↓ Ψ = −   is the copper-

oxygen creation operator in terms of copper (X) and oxygen (P) projecting operators. One can check that copper-oxygen 

exchange term ( ) 4pd p d d pJ n n − S S  is diagonal by introducing ,pd σΨ  and , pdσΨ  operators, i.e. 

( ), ,2pd pd
i pd ii t Jσ σ∂Ψ ∂ = Ψ . 

Note, in general case the effective Hamiltonian contains also the Coulomb interaction between doped holes 
and the interaction of quasiparticles via the phonon field. We dropped these terms here, because they do not con-
tribute directly to the spin susceptibility. The hopping matrix element is 0

ij ijt t=  

( ) ( )exp( / ) 1 2 2 1i i i jE S Sγ ω δ δ∗ ∗  − + + +   where 0
ijt  is the bare hopping integral. The exponential factor takes 

into account electron-phonon interaction, 2( )i i iE g ω∗ ∗=  is the so-called polaron stabilization energy of the cop-

per-oxygen singlet state and 0 < γ < 1. From the experimental data [16] the whole exponential factor was esti-
mated to be 0.92i iEγ ω∗ ∗ ≈  around the optimal doping. Note, its value is increasing upon decreasing doping. The 
effect of the copper spin correlations is described by the square brackets. In particular, one sees that for the anti-
ferromagnetic square lattice the hopping between nearest neighbors vanishes. This is illustrated in Fig. 5. As one 
sees the oxygen hole cannot move between the copper sites with antiparallel spin orientation. Furthermore, there 
is no more than one oxygen hole per each unit cell. Then, the spectral weight of the singlet-correlated band 
changes upon doping similar to that of the upper Hubbard band. The half-filling is already reached at δ = 1/3. This 
doping level we will refer to the optimal doping. We show in Fig. 6 the doping evolution of the spectral weight for 
the lower Hubbard (copper) band and singlet-correlated (copper-oxygen) band. Note, the latter is completely filled 
for δ = 1. 
 

In the following section we will discuss the resonance peak seen by Inelastic Neutron Scattering (INS) in high-Tc 
cuprates. We will show that its position might be sensitive to the renormalization of the hopping integral and could be a 
good test for the polaronic nature of carrier motion in cuprates. 

 
2. Dynamical spin susceptibility 
To derive the dynamical spin susceptibility in the superconducting state we use the method suggested by Hubbard and 
Jain [18] that allows to take into account strong electronic correlations. First we add the external magnetic field applied 
along c-axis into the effective Hamiltonian  

 ( )Re ii t
iH h e ω− −= ∑ qR

q
q

. (24) 

Then we write an equation of motion for the Ψ operators using the Roth-type of the decoupling scheme [19] and ex-
panding the  

 { } ( ) ( ), , 1 2 Re i tpd pd z
pd i i iP S e ωσ σ σ δ σ − = Ψ Ψ = + +  ∑ iqR

q
q

  

up to the first order in ( , )zzS hχ ω=q qq . In particular,  

Fig. 5. Illustration of the copper-oxygen singlet movement on the square lattice 

Fig. 6. The spectral weight of the lower Hubbard (copper) band (-
1 < δ < 0) and the singlet-correlated (copper-oxygen) band 
(0 < δ < 1). Note, the optimal doping corresponds to the half-
filled copper-oxygen band which is reached for δ = 1/3 
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,
, ,

,

( )

2 2

pd
pd pd

pd i t

i
t

J h
t S e

σ
σ σ

σ ω

ε µ
−

−
−

− −
− −

∂Ψ
= − Ψ + ∆ Ψ +

∂
  

+ − − Ψ     

k
k k k k

q q
k q q k q

 (25) 

and the similar expression occurs for ,pd σ
−Ψ k . Here, ( )( )0 2 cos cosx yk k∆ = ∆ −k  is the 2 2x y

d
−

-wave superconducting 

gap, ( )cos cosx yJ J k k= +q  is the Fourier transform of the superexchange interaction on a square lattice. 

Using the Bogolyubov-like transformations to the new quasiparticle states  

 
, , ,pd pd pdu vσ σ σα − −

−= Ψ + Ψk k k k k , (26) 
 , , ,pd pd pdu vσ σ σα −

− −= Ψ − Ψk k k k k . 

where ( ) ( )( )2 1 2 1u Eε µ= + −k k k  and ( ) ( )( )2 1 2 1v Eε µ= − −k k k  are the Bogolyubov coefficients, µ is a chemical 

potential, and 2 2( )E ε µ= − + ∆k k k  is the energy dispersion in the superconducting state, we obtain the new equations 

of motion for the α operators  

 

,
, , ,( )exp( )

pd
pd pd pdi E M u v i t

t

α α ω
↓

↓ ↓ ↑
− − +

∂
= + Ψ + Ψ −

∂
k

k k kq k k q k k q

, (27) 

 
,

, , ,( )exp( )
pd

pd pd pdi E M u v i t
t

α α ω
↑

↓ ↑ ↓−
− + −

∂
= − + Ψ − Ψ −

∂
k

k k kq k k q k k q . 

Here, we have introduced the notation ( )2 2M J t S h−= − −kq q k q q q . It is further useful to re-write these equations in 

the form. 

 

,
,

, ,( ) ( ) exp( )

pd
pd

pd pd

i E
t

M u u v v u v u v i t

α α

α α ω

↓
↓

↓ ↑
− − − − − − +

∂
− =

∂
 = + + − − 

k
k k

kq k k q k k q k q k q k k k q k q

 (28) 

and  

 

,
,

, ,( ) ( ) exp( )

pd
pd

pd pd

i E
t

M u v v u u u v v i t

α α

α α ω

↑
↑−

−

↓ ↑
− − − − − − +

∂
+ =

∂
 = − + + − 

k
k k

kq k k q k k q k q k k q k k q k q

 (29) 

which could be solved by the iteration procedure. Because the quantities Mkq  are assumed to be small one can put into 

the right hand sides of Eqs. (28)-(29) the time dependence of the quasiparticle operators in the absence of the external 

magnetic field, i.e. , , (0)exp( )pd pd iE tα α↓ ↓
− − −= −k q k q k q , , , (0)exp( )pd pd iE tα α↑ ↑

− + − + −=k q k q k q . Then the solution can be written as  

 
, , ,

1

,
2

(0)exp( ) (0)exp[ ( ) ]

(0)exp[ ( ) ]

pd pd pd

pd

iE t B i E t

B i E t

α α α ω

α ω

↓ ↓ ↓
− −

↑
− + −

= − + − + +

+ −
k k k k q k q

k q k q

, (30) 

where the coefficients are:  

 
1

( )M u u v v
B

E E ω
− −

−

+
=

− + +
kq k k q k k q

k k q  (31) 

 2

( )
.

M u v u v
B

E E ω
− −

−

−
=

− − +
kq k q k k k q

k k q

 

Similarly, the solution of the next equation can be found:  

 
, , ,

1

,
2

(0)exp( ) (0)exp[ ( ) ]

(0) [ ( ) ]

pd pd pd

pd

iE t A i E t

A exp i E t

α α α ω

α ω

↑ ↑ ↓
− − − −

↑
− + −

= + − + +

+ −
k k k k q k q

k q k q

 (32) 

with coefficients  
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 1 2

( ) ( )
,

M u v u v M u u v v
A A

E E E Eω ω
− − − −

− −

− +
= =

+ + − +
kq k k q k q k kq k k q k k q

k k q k k q

. (33) 

The expression for the longitudinal component of the dynamical spin susceptibility can be obtained from the relation  

 , , , , 0pd pd pd pd
i i i i

↑ ↑ ↓ ↓Ψ Ψ − Ψ Ψ = . (34) 

For example, for the spin ’up’ we have 

 ( ), , , , , ,1 1
i ii ipd pd pd pd pd pd

i i ie e
N N

δ′−↑ ↑ ↑ ↑ ↑ ↑
′ +Ψ Ψ = Ψ Ψ = + Ψ Ψ∑ ∑k k R qR

k k k k q . (35) 

Note, the last term has the same exponential factor ( )iieqR  as for external magnetic field. Then the correlation 

function can be found  

 
{

}
, , , , , ,

, , , ,

1 1
i

i

ipd pd pd pd pd pd

ipd pd pd pd

e u u v v
N N

u v v u e

α α α α

α α α α

↑ ↑ ↑ ↑ ↓ ↓
+ + + + − − −

↑ ↓ ↓ ↑
+ − − + − +

Ψ Ψ = + +

+ +

∑ ∑qR
k k q k k q k k q k k q k k q

qR
k k q k k q k k q k k q

. (36) 

Substituting in the rhs the solution for the quasiparticle operators (30) and (32) one can see that each correlation func-

tion gives two terms which are proportional to Mkq . For example, in the function , ,pd pdα α↑ ↑
+k k q  one obtains the first 

term after substitution ,pdα ↑
k  and taking the linear correction with respect to the magnetic field into account. Similarly, 

the second item arises from the substitution of operator , pdα ↑
+k q . Note, we use , ,(0) (0)pd pd

pdP fα α↓ ↓ =k k k  and 

, ,(0) (0) (1 )pd pd
pdP fα α↓ ↓ = −k k k , where [ ]1/ 1 exp( / )Bf E k T= +k k  is the usual Fermi function. 

Finally, after straightforward calculations and using the following definition  

 ( , )z zzS hχ ω=q qq  (37) 

one obtains the expression for the dynamical spin susceptibility in the form  

 0

0

( , )
( , )

( , ) ( , ) ( , )J Z

χ ωχ ω
χ ω ω ω

=
+ Π +q

q
q

q q q
 (38) 

This is a central result of our paper. Here, 0( , )χ ωq  is the usual BCS-like Lindhard response function, Π(q,ω) and 

Z(q,ω) result from the strong electronic correlation effects. In the normal state the expression for Π(q,ω) has been ob-
tained by Hubbard and Jain [18]. In the superconducting state it is given by  

 

( )

( )

( )

( )
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0

(1 ) (1 )

0

(1 )

0

(1 )

pdP t f t f
u u u u v v

N i E E

t f t f
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i E E

t f t f
u v u v u v

i E E

t f t
u v v u u v

ω
ω

ω

ω

+ +
+ + + +

+

+ +
+ + + +

+

+ +
+ + + +

+

+ + +

 −Π = + + + + −
− − −

+ + +
+ − +

− −
+ − +

+ + +

− −
+ −

∑ k k k q k q
k k q k k q k k q

k k k q

k k k q k q
k k q k k q k k q

k k q

k k k q k q
k k q k k q k q k

k k q

k k
k q k k k q k k q

q

0

f

i E Eω
+ +

+
+

+ − − 
k q k q

k k q

. (39) 

The function Z(q,ω) is written as follows  

 
(1) (1)

1 0
( , )

0

i
Z

N i

ωω
ω ε ε

+

+
+

+=
+ + −∑

k k k q

q . (40) 

Here, fk  is the Fermi distribution function, ( )(1) 1 2tε δ= −k k , pdP tε =k k  is the energy dispersion in the normal state, 

and  

 2 (cos cos ) 4 cos cos 2 (cos 2 cos 2 )k x y x y x yt t k k t k k t k k′ ′′= + + + +   

is the Fourier transform of the hopping integral on a square lattice including nearest, next- and next-next-nearest 
neighbor hopping, respectively. The origin of the terms Π(q,ω) and Z(q,ω) relates to the no double occupancy con-
straint. In particular, for the Coulomb repulsion U = ∞ and J = 0 the dynamical spin susceptibility does not reduce to the 
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standard Lindhard response function but is renormalized by the electronic correlation effects [20]. For the 0∆ =k  

Eq. (37) agrees with the normal state result for the dynamical spin susceptibility [18,21,22]. 
 
Results and Discussion 
Inelastic neutron scattering (INS) measurements probe directly the imaginary part of the dynamical spin susceptibility. 
Therefore, it is of interest to analyze the role played by the electronic correlations in connection with the ’resonance’ 
peak seen by INS [3]. This feature is well understood using various approaches [23,24] as a result of the spin density 
wave (SDW) collective mode formation at resω ω= , i.e. when the denominator of the RPA spin susceptibility at the an-

tiferromagnetic wave vector Q is close to zero. 

 

 
Fig. 7. Dispersion of the resonance peak calculated from Eq. (37) (a) as a function of frequency and qx away from (π,π). Two 

branches of the dispersion curves are in good agreement with recent experimental data [26]. For comparison we also put the 
RPA results (b) using the same parameters 

 
Let us first concentrate on the influence of the electronic correlations beyond RPA on the resonance peak 

formation at Q = (π,π) In Fig. 7(a) we show results of our calculations for the Im χ(Q,ω) from Eq. (37) as a func-
tion of frequency and xq  ( yq π= ) in the superconducting state. Here, we use t = 200, t' = –20, and t'' = 4 (in meV) 

at optimal doping. For comparison we also put RPA results using the same parameters in Fig. 7 (b). Clearly, addi-
tional electronic correlations beyond RPA (Π and Z terms) affect significantly the Imχ behavior in the supercon-
ducting state. First, in contrast to the RPA the position of the resonance peak obtained from Eq. (37) is shifted to a 
lower frequencies. The main reason is that due to Π and Z-terms the resonance condition can be satisfied easily in 
a more wide range of parameters. Furthermore, its intensity is also much higher than in the RPA case. In addition, 
the upper branch of the resonance peak dispersion away from resω  and AFQ  is much more pronounced. Note, 

these dispersion curves 2∝ q  are in good agreement with experiment [25,26]. Finally, we discuss the influence of 

the electron-phonon interaction on the resonance peak formation by changing the isotope mass of 16O by 18O. This 
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shifts the average frequency of the LO phonon mode and consequently renormalizes the hopping integral t and the 
superexchange coupling constant, J. Most importantly, the electron-phonon interaction changes most dramatically 
the hopping integral t rather than the superexchange coupling J. In particular, the superexchange coupling con-
stant J changes less than 1% upon substituting the isotopes [27] which agrees well with experimental data [28]. 
Therefore, there is almost no influence of the isotope substitution on the resonance peak determined from RPA, 
since in this approximation its formation is determined mainly by J. In particular, we find within RPA no change 
in the resω  value upon changing the isotopes. In the case of Eq. (37) the most important contribution to the isotope 

effect on the resonance peak appears due to ( , )ktωΠ ∝q . In particular, using our estimation given above we find 

that at optimal doping the hopping integral changes by 6% upon replacing 16O by 18O. This results in the lowering 
of the resonance frequency at (π,π) from 41 meV for the 16O isotope towards 39 meV for the 18O sample. This 
leads to ln 0.4res resd dlnMα ω= − ≈  for optimally-doped cuprates. This effect is beyond the experimental error 

and can be further tested experimentally. Furthermore, in the underdoped cuprates one may expect larger isotope 
effect due to a larger value of /i iEγ ω∗ ∗  [16]. At the same time the superconducting transition temperature which is 

determined by J shows much weaker isotope effect and is around 
cTα ≈ 0.05 [27]. Therefore, even if the supercon-

ductivity is driven by the magnetic exchange the resonance peak formation can be significantly renormalized by 
the strong electron-phonon interaction. 
 
Summary 
To summarize, we analyze the influence of the electronic correlations and the electron-phonon interaction on the dy-
namical spin susceptibility in layered cuprates. The electronic correlations taken beyond RPA redistribute the spectral 
weight of the resonance peak away from (π,π) leading to the pronounced dispersion. This is in good agreement with re-
cent INS data [25,26]. Furthermore, we find the isotope effect on the resonance peak due to strong coupling of the carri-
ers to LO phonon mode. It results from both electron-phonon coupling and electronic correlation effects. In contrast to 
the small isotope effect on the superconducting transition temperature we find larger isotope coefficient on the reso-
nance peak 0.4resα ≈  in optimally-doped cuprates. We also would like to note that the value of the isotope coefficient 

depends strongly on the value of the exponential factor. Therefore, the experimental verification of our prediction is de-
sirable. In particular, it would put a strong constraint on the ingredients the theory of cuprates must contain. 
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